不同声子晶体模型的轨道结构振动带隙对比分析

梁玉雄1,冯青松1,陆建飞2,杨舟1,雷晓燕1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (5) : 131-140.

PDF(3362 KB)
PDF(3362 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (5) : 131-140.
论文

不同声子晶体模型的轨道结构振动带隙对比分析

  • 梁玉雄1,冯青松1,陆建飞2,杨舟1,雷晓燕1
作者信息 +

Comparative analysis of vibration band gap of track structure with different phononic crystal models

  • LIANG Yuxiong1, FENG Qingsong1, LU Jianfei2, YANG Zhou1, LEI Xiaoyan1
Author information +
文章历史 +

摘要

为从弹性波角度准确分析轨道结构的振动特性,采用传递矩阵法建立单层欧拉梁、单层铁木辛柯梁,双层欧拉梁、双层铁木辛柯梁四种轨道结构声子晶体理论分析模型,分析结果表明,不考虑阻尼影响时,单层欧拉梁模型与单层铁木辛柯梁模型在0-250Hz内带隙位置无明显差异,在1000Hz以上时二者的带隙位置则显著不同;双层欧拉梁模型和双层铁木辛柯梁模型0-250Hz内带隙位置有较大不同,而在250Hz以上频段内的“带隙”位置基本相同,且与单层梁模型带隙位置有显著不同。考虑阻尼影响时,各模型均存在通带变为不完全带隙,以及禁带的频带宽度会有微小展宽的现象,禁带的中心位置受阻尼的影响可忽略不计。在低频(0-250Hz)内的现场测试结果与理论分析结果基本吻合,因此建议采用声子晶体理论分析钢轨振动噪声控制时,250Hz以上的中高频振动分析采用铁木辛柯梁模型更为准确,分析250Hz以下低频振动时,无砟轨道可用单层欧拉梁模型或铁木辛柯梁模型,有砟轨道应采用双层铁木辛柯梁模型。

Abstract

In order to analyze the vibration characteristics of track structure accurately from the perspective of elastic wave, the transfer matrix method was used to establish 4 kinds of phononic crystal theoretical analysis models, single-layer Euler beam, single-layer Timoshenko beam, double-layer Euler beam and double-layer Timoshenko beam. The energy bands and transmission characteristics of track vibration was studied in 0-3500 Hz. The results showed that without considering the influence of damping there is no obvious difference between the single-layer Euler beam model and the single-layer Timoshenko beam model in 0-250 Hz,while the band gap position is significantly different above 1000 Hz. The band gap position in the low frequency during 0-250 Hz was different between the double-layer Euler beam model and the double-layer Timoshenko beam model, when the frequency increases to more than 250 Hz, the double-layer beam model is basically the same, but significantly different from that of the single-layer beam model. When considering the damping affection, the passband changed into incomplete band gap, the width of the forbidden band appeared a small broadening, and the center position of the forbidden band is negligible affected by the damping. Site tests results show that at low frequencies (0-250 Hz) The band gap is basically consistent with the theoretical analysis results. Therefore, in order to study the track vibration and noise controlling with the phononic crystal theory, the Timoshenko beam model was more accurate to analyze the medium and high frequency vibration of more than 250 Hz, the single-layer support Euler beam model and single-layer support Timoshenko beam model can be chosen in ballastless track, while when the analysis frequency range was below 250 Hz, the double-layer support Timoshenko beam model should be chosen.

关键词

弹性波传播 / 带隙;声子晶体理论模型;有砟轨道;无砟轨道

Key words

elastic wave propagation / band gap / phononic models / ballast track / ballastless track

引用本文

导出引用
梁玉雄1,冯青松1,陆建飞2,杨舟1,雷晓燕1. 不同声子晶体模型的轨道结构振动带隙对比分析[J]. 振动与冲击, 2022, 41(5): 131-140
LIANG Yuxiong1, FENG Qingsong1, LU Jianfei2, YANG Zhou1, LEI Xiaoyan1. Comparative analysis of vibration band gap of track structure with different phononic crystal models[J]. Journal of Vibration and Shock, 2022, 41(5): 131-140

参考文献

[1] Anon. Future noise policy: European commission green paper[J]. Noise News International, 1997, 5:74-94(21).
[2] King W F , Bechert D . On the sources of wayside noise generated by high-speed trains[J]. Journal of Sound & Vibration, 1979, 66(3):311-332.
[3] Thompsom D J. Railway noise and vibration [M]. New York: Elsevier, 2009.
[4]  Grassie S L , Cox S J . The Dynamic Response of Railway Track With Flexible Sleepers to High Frequency Vertical Excitation[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 1984, 198(7):117-124.
[5] Grassie SL, Gregory RW, Johnson KL (1982) The dynamic response of railway track to high frequency lateral excitation,Journal of Mechaical Engineering Science,1982,24(2):91–95
[6] Grassie SL, Gregory RW, Johnson KL (1982) The dynamic response of railway track to high frequency longitudinal excitation. Journal Mechaical Engineering Science,1982,24(2):97–102
[7] Ono K , Yamada M . Analysis of railway track vibration[J]. Journal of Sound & Vibration, 1989, 130(2):269-297.
[8] 徐志胜,翟婉明,王开云,基于Timoshenko梁模型的车辆轨道耦合振动分析,西南交通大学学报,2003,38(1):22-27
Sheng X Z , Ming Z W , Yun W K . Analysis of vehicle-track coupling vibration based on Timoshenko beam model[J]. Journal of Southwest Jiaotong University, 2003,38(1):22-27.
[9]  Wu T X , Thompson D J. Application of a multiple-beam model for lateral vibration analysis of a discretely supported rail at high frequencies[J]. Journal of the Acoustical Society of America, 2000, 108(3 Pt 1):1341.
[10] 雷晓燕,轨道临界速度与轨道强振动研究,岩土工程学报,2006,28(3);419-422
Lei Xiaoyan. Study on critical velocity and vibration boom of track. Chinese Journal of Geotechnical Engineering, 28 (3):419–422.
[11] 雷晓燕,高速铁路轨道振动与轨道临界速度的傅里叶变换法,中国铁道科学,2007,28(6):30-34
Lei Xiaoyan. Analyses of Track Vibration and Track Critical Velocity for High-Speed Railway with Fourier Transform Technique[J]. China Railway Science, 2007, 28(6):30-34.
[12] 雷晓燕,邓福清,客货混运铁路专线轨道振动分析,铁道工程学报,2007,(3):16-20,
LEI Xiao-Yan, DENG Fu-Qing. Vibration Analysis of Track for Railways with Passenger and Freight Traffic[J]. Journal of Railway Engineering Society, 2007,(3):16-20.
[13] Lei X, Rose JG, Track vibration analysis for railways with mixed passenger and freight traffic. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit,2008, 222(4):413–421
[14] Lei X , Rose J G . Numerical Investigation of Vibration Reduction of Ballast Track with Asphalt Trackbed over Soft Subgrade[J]. Journal of Vibration and Control, 2008, 14(12):1885-1902.
[15] Grassie S L, Gregory R W , Harrison D , et al. The dynamic response of railway track to high frequency vertical excitation[J]. 1982, 24(2):77-90.
[16] Thompson D, NICOLASVINCENT. Track Dynamic Behaviour at High Frequencies. Part 1: Theoretical Models and Laboratory Measurements[J]. Vehicle System Dynamics, 1995, 24(sup1):14.
[17] Vincent N, Thompson D J . Track Dynamic Behaviour at High Frequencies. Part 2: Experimental Results and Comparisons with Theory[J]. Vehicle System Dynamics, 1995, 24(sup1):100-114.
[18] 马龙祥, 刘维宁, 刘卫丰. 移动荷载作用下周期支撑轨道结构振动研究[J]. 中国铁道科学, 2013(1):1-7.
Ma Longxiang, Liu Weining, Liu Weifeng. Study on vibration of periodic support track structure under moving load [J]. China Railway Science, 2013 (1): 1-7.
[19] Zhang X, Thompson D J , Li Q , et al. A model of a discretely supported railway track based on a 2.5D finite element approach[J]. Journal of Sound and Vibration.2018, 438:153-174.
[20] Sheng X, Li M H . Propagation constants of railway tracks as a periodic structure[J]. Journal of Sound Vibration, 2007, 299(4):1114-1123.
[21] Sheng X, Jones C J C , Thompson D J . Responses of infinite periodic structures to moving or stationary harmonic loads[J]. Journal of Sound & Vibration, 2005, 282(1):125-149.
[22] 温激鸿, 声子晶体振动带隙及减振特性研究[D]. 国防科学技术大学, 2005.
Wen Jihong, Study on vibration band gap and vibration damping characteristics of temperature-excited hung, phononic crystal [D]. University of National Defense Science and Technology, 2005.
[23] 温激鸿, 王刚, 刘耀宗,等. 周期弹簧振子结构振动带隙及隔振特性研究[J]. 机械工程学报, 2005,41(2), 205-209.
Wen Jihong,Wang Gang, Research on vibration band gaps and characteristic of vibration isolation of periodic mass-spring structure. Journal of Mechanical Engineering,2005,41(2), 205-209.
[24] 温熙森,声子晶体[M]. 国防工业出版社, 2009.
Wen Xiseng. Phononic crystals[M],National Defense Industry Press,2009.
[25] 李锁斌, 窦益华, 陈天宁, 万志国, 声子晶体板中低频宽禁带的形成机理[J]. 西安交通大学学报, 2018, 052(012):159-166.
LI Suobin, DOU Yihua, CHEN Tianning, WAN Zhiguo .Forming Mechanisms of Low-Frequency Broad Band Gaps in Locally Resonant Phononic Crystal Plates[J]. Journal of Xi'an Jiaotong University, 2018, 052(012):159-166.
[26] A.Khelif ,A.Adibi, Phononic crystals: Fundamentals and applications[M], New York:Springer,2016.
[27] Wang P, Yi Q , Zhao C , et al. Elastic wave propagation characteristics of periodic track structure in high-speed railway[J]. Journal of Vibration and Control, 2018:107754631878794-.
[28] Wang P, Yi Q , Zhao C , et al. Wave propagation in periodic track structures: band-gap behaviours and formation mechanisms[J]. Archive of Applied Mechanics, 2016, 87(3):1-17.
[29] 孟铎. 周期性轨道结构振动带隙特性及动力吸振器研究[D]. 2017.
Meng Duo. Study on vibration band gap characteristics and dynamic vibration absorber of periodic track structures.[D].2017.
[30] 易强,王平,赵才友,盛曦,卢俊.有砟轨道结构弹性波传播特性研究[J].铁道学报,2019,41(06):137-145.
YI Qiang, WANG Ping, ZHAO Caiyou, SHENG,Xi, LU Jun. Study on Elastic Wave Propagation Properties of Ballast Track Structure, Journal of the China Railway Society,2019,41(06):137-145.
[31] 冯青松,杨舟,郭文杰,陆建飞,梁玉雄,雷晓燕.周期离散支承钢轨垂向振动带隙特性分析[J].中国科学:技术科学:1-14[2020-07-19].http://kns.cnki.net/kcms/detail/11.5844.TH.20200430.1630.002.html.
FENG QingSong, YANG Zhou, GUO WenJie,LU JianFei.LIANG YuXiong, LEI XiaoYan. Analysis of vertical vibration band gap characteristics of periodic discrete support rail,SCIENTIA SINICA Technologica,1-14[2020-07-19].http://kns.cnki.net/kcms/detail/11.5844.TH.20200430.1630.002.html.
[32] 盛曦,赵才友,王平,陈俊豪,魏晓.整体道床轨道扣件刚度对钢轨声功率特性的影响[J].西南交通大学学报,2018,53(05):928-936,1094.
SHENG Xi, ZHAO Caiyou, WANG Ping, CHENG Junhao,WEI Xiao. Effects of fastener stiffness of monolithic bed track on vertical rail sound power characteristics[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 928−936, 1094.
[33] 李凤明,胡超,黄文虎,周敏.失谐周期弹性支撑多跨梁中的波动局部化[J].固体力学学报,2004,25(1):83-86
Li Fengming, Hu Chao, Huang Wenhu, Zhou Min. Wave Localization in Disordered Multi-span Beams with Elastic Supports [J]. Acta Mechanica Solida Sinica, 2004,25(1):83-86
[34] 丁兰,朱宏平,吴巧云.弹性地基上随机失谐周期加固管的波动局部化特性研究[J].工程力学,2015,32(02):45-52.
 DING Lan, ZHU Hong-ping, WU Qiao-yun. Studyon Wave Localization in Randomly Disordered Periodically Stiffened Pipes on Elastic Foudations [J]. Engineering Mechanics, 2015,32(02):45-52.

PDF(3362 KB)

Accesses

Citation

Detail

段落导航
相关文章

/