当前摇摆墙体系研究广泛,但由于放松了墙底约束,抗侧刚度减小,使得结构整体变形过大。在框架剪力墙双重结构体系中,利用剪力墙和框架在地震作用下不同的变形模式,在两者之间连接屈曲约束支撑(BRB)可有效降低框架结构的水平加速度响应;而本文则进一步在剪力墙底设置参数可控的金属阻尼器(MD),防止剪力墙底部破坏的同时,整体结构在BRB与MD共同作用下,整体结构地震响应也得到有效改善。本文以某六层混凝土框架剪力墙为例,利用ABAQUS有限元软件并结合UMAT二次开发接口的PQ-Fiber用户子程序,建立了框架剪力墙非线性有限元模型,变化BRB和MD初始刚度和屈服强度,进行弹塑性动力时程分析。结果表明:在BRB和墙底MD的双重耗能作用下,当BRB和MD屈服强度取值一个合适的属性范围,双重耗能框架剪力墙结构的地震响应得到了明显改善。
Abstract
Rocking wall system has been widely studied, but due to the relaxation of the wall bottom constraint, the anti-side stiffness decreases, resulting in the overall deformation of the structure too large, not meeting the security requirements. In order to solve this problem, the buckling restrained brace(BRB)can yield without buckling under the action of tension and pressure, then the BRB is used as the connecting member of the frame and the wall, and metallic damper (MD) is set at the bottom of the wall to double control the structural deformation of the lower limit value, enhance the energy dissipation of the structure and reduce the seismic response of the structure. In this paper, a six-story concrete frame-shear wall, for example, using the finite element software ABAQUS and combined with UMAT secondary development interface of PQ-Fiber user subroutine, established the frame-shear wall structure model, the framework of different yield strength BRB rocking wall to wall with different stiffness of metallic damper model, through dynamic elastic-plastic time history analysis, to study the seismic performance of the structure. The results show that the seismic response of the frame rocking wall structure is greatly improved under the control of the double energy dissipation element of BRB between the frame and the shear wall and MD at the shear wall base, and which are in a proper range of properties.
关键词
双重耗能 /
框架剪力墙结构 /
摇摆墙 /
屈曲约束支撑 /
金属阻尼器 /
抗震性能
{{custom_keyword}} /
Key words
the double energy dissipation mechanism /
burial structure system;rocking wall /
buckling-restrained brace /
metallic damper /
seismic performance
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 周颖,吕西林.摇摆结构及自复位结构研究综述[J].建筑结构学报, 2011, 32(9): 1-10.
Zhou Ying, Lü Xilin. State-of-the-art on rocking and self-centering structures [J].Journal of Building Structures, 2011, 32(9): 1-10. (in Chinese)
[2] Housner G.W. The behavior of inverted pendulum structures during earthquakes [J]. Bulletin of the Seismological Society of America, 1963, 53(2): 403-417.
[3] Priestley M.J.N., Evison R.J., Carr A. J. Seismic response of structures free to rock on their foundations[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1978, 11(3): 141-150.
[4] Wada A., Qu Z., Ito H., etal. Seismic retrofit using rocking walls and steel dampers[C]. ATC /SEI Conference on improving the seismic performance of existing buildings and other structures. 2009: 1010-1021.
[5] 曲哲, 和田章, 叶列平. 摇摆墙在框架结构抗震加固中的应用[J]. 建筑结构学报, 2011(9), 32(9): 11-20.
Qu Zhe, Wada Akira, Ye Lieping. Seismic retrofit of frame structures using rocking wall system[J]. Journal of Building Structures, 2011(9), 32(9): 11-20. (in Chinese)
[6] Qu Z., Wada A., Motoyui S., Sakata H., Kishiki S. Pin-supported walls for enhancing the seismic performance of building structures [J]. Earthquake Engineering and Structural Dynamics, 2012; 41(14): 2075-2091.
[7] 曹海韵, 潘鹏, 叶列平,等. 混凝土框架摇摆墙结构体系的抗震性能分析[J]. 建筑科学与工程学报, 2011, 28(1):64-69.
Cao Haiyun, Pan Peng, Ye Lieping, etal. Seismic performance analysis of RC frame rocking-wall structure system[J]. Journal of Architecture and Civil Engineering, 2011, 28(1):64-69. (in Chinese)
[8] 吴守君,潘鹏,张鑫. 框架-摇摆墙结构受力特点分析及抗震加固中的应用[J]. 工程力学, 2016, 33(6):54-67.
WU Shou-jun, PAN Peng, ZHANG Xin. Characteristics of frame rocking wall structure and its application in a seismic retrofit[J]. Engineering Mechanics. 2016, 33(6):54-67.(in Chinese)
[9] Midorikawa M., Tatsuya A., Tadashi T., etal. Earthquake response reduction of buildingsby rocking structural systems[C]. Smart Structures and Materials 2002: Smart Systems for Bridges, Structures,and Highways. San Diego, CA: SPIE, 2002: 265-272.
[10] Ajrab J. J., Gokhan P., Mander J.B. Rocking wall-frame structures with supplemental tendon systems[J]. Journal of Structural Engineering, 2004, 130(6): 895-903.
[11] Hitaka T., Sakino K.. Cyclic tests on a hybrid coupled wall utilizing a rocking mechanism[J]. Earthquake Engineering and Structural Dynamics, 2010, 37(14):1657-1676.
[12] Gavridou S. Shake table testing and analytical modeling of a full-scale, four-story unbonded post-tensioned concrete wall building[D]. UCLA, 2015.
[13] 冯玉龙,吴京,孟少平,等.底部带有屈曲约束支撑的摇摆墙框架结构抗震性能分析[J]. 振动与冲击, 2016, 35(23):35-40.
Feng Yulong, Wu Jing,Meng Shaoping, et al. Aseismic performance analysis of rocking wall frame structures with buckling-restrained braces in base[J]. Journal of Vibration and Shock, 2016, 35(23): 35-40. (in Chinese)
[14] Deierlein G. G., Ma X., Eatherton M, et al. Collaborative research on development of innovative steel braced frame systems with controlled rocking and replaceable fuses[C]//Proceedings of 6th international conference on urban earthquake engineering, Tokyo. 2009: 413-416.
[15] Barbagallo F. , Bosco M., Ghersi A , et al. Seismic Retrofitting of Eccentrically Braced Frames by Rocking Walls and Viscous Dampers[J]. Key Engineering Materials, 2018, 763:1105-1112.
[16] M. Kasagi, K. Fujita, M. Tsuji, I. Takewaki. Automatic generation of smart earthquake-resistant building system: Hybrid system of base-isolation and building-connection[J].Heliyon, 2016, 2(2):1-21
[17] M. Murase, M. Tsuji, I. Takewaki. Smart passive control of buildings with higher redundancy and robustness using base-isolation and inter-connection[J] Earthquakes and Structures, 2013, 4(6):649-670.
[18] 吕西林, 全柳萌, 蒋欢军. 从16届世界地震工程大会看可恢复功能抗震结构研究趋势[J]. 地震工程与工程振动, 2017(03):5-13.
Lu Xilin, Quan Liumeng, Jiang Huanjun. Research trend of earthquake resilient structures seen from 16WCEE[J]. Earthquake Engineering and Engineering Vibration, 2017(03):5-13.
[19] 孔祥雄. 新型屈曲约束支撑抗震性能研究[D]. 中国建筑科学研究院, 2009.
Kong Xiangxiong. Study on seismic behavior of a new type of buckling-restrained braces[D]. China Academy of Building Reserch, 2009. (in Chinese)
[20] 吕文, 钱稼茹, 方鄂华. 钢筋混凝土剪力墙延性的试验和计算[J]. 清华大学学报(自然科学版), 1999, 39(4):88-91.
Lu Wen, Qian Jiaru, Fang Ehua. Experimental and computational studies on ductility of reinforced concrete shear walls[J]. Journal of Tsinghua University (Science and Technology), 1999, 39(4):88-91. (in Chinese)
[21] 文保军. 钢筋混凝土剪力墙塑性铰区受剪承载力分析[D]. 西安建筑科技大学, 2008.
Wen Baojun. Shear capacity of plastic hinge region of RC shear wall[D]. Xi`an University of Architecture and Technology, 2008. (in Chinese)
[22] FEMA356. Prestandard and commentary for the seismic rehabilitation of buildings. Washington(DC) [S]: Federal Emergency Management Agency, 2000.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}