[1] Frahm H. Device for damping vibrations of bodies[P]. U.S: Patent 0989958, 1911.
[2] Ormondroyd J, Den Hartog J P. The theory of the dynamic vibration absorber. ASME Journal of Applied Mechanics. 1928, 50: 9-22.
[3] Hahnkamm E. The damping of the foundation vibrations at varying excitation frequency. Master of Architecture, 1932, 4: 192-201.
[4] Brock J E. A note on the damped vibration absorber. ASME Journal of Applied Mechanics, 1946, 13(4): A284.
[5] Den Hartog J P. Mechanical vibrations 3th ed. New York: McGraw-Hall Book Company 1947: 112-132
[6] 倪振华. 振动力学. 西安: 西安交通大学出版社, 1989.
Ni Zhenhua. Vibration Mechanics. Xi’an: Xi’an Jiaotong University Press, 1989.
[7] Ren M Z. A variant design of the dynamic vibration absorber[J]. Journal of Sound and Vibration, 2001, 245(4): 762-770.
[8] Liu K, Liu J. The damped dynamic vibration absorbers: revisited and new result[J]. Journal of Sound and Vibration, 2005, 284(3): 1181-1189.
[9] Liu K, Coppola G. Optimal design of damped dynamic vibration absorber for damped primary systems[J]. Transactions of the Canadian Society for Mechanical Engineering, 2010, 34(1): 119-135.
[10] Asami T, Nishihara O. Analytical and experimental evaluation of an air damped dynamic vibration absorber: design optimizations of the three-element type model. Journal of vibration and acoustics, 1999, 121(3): 334-342.
[11] Asami T, Nishihara O. H2 optimization of the three-element type dynamic vibration absorbers. Journal of Vibration and Acoustics, 2002, 124(4): 583-592.
[12] 赵艳影, 徐鉴. 时滞非线性动力吸振器的减振机理[J]. 力学学报, 2008, 40(1): 98-106.
Zhao Yanying, Xu Jian. Mechanism analysis of delayed nonlinear vibration absorber[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 98-106.
[13] Almazan J L, Llera J C D L, Inaudi J A, et al. A bidirectional and homogeneous tuned mass damper: a new device for passive control of vibrations[J]. Engineering Structures, 2007, 29(7): 1548-1560.
[14] Agathoklis G, Francesco P. Wind-Induced vibration mitigation in tall buildings using the tuned mass-damper-inerter[J]. Journal of Structural Engineering, 2017, 143(9): 04017127.
[15] Xu K, Bi K M, Han Q, et al. Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study[J]. Engineering Structures, 2019, 182: 101-111.
[16] Yang T Z, Yang X D, Li Y H, et al. Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity[J]. Journal of Vibration and Control, 2013, 20(9): 1293-1300.
[17] Song G B, Zhang P, Li L Y, et al. Vibration control of a pipeline structure using pounding tuned mass damper[J]. Journal of Engineering Mechanics, 2016, 142(6): 04016031.
[18] Zhou K, Xiong F R, Jiang N B, et al. Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink[J]. Nonlinear Dynamics, 2019, 95(2): 1435-1456.
[19] Liu Z Y, Tan X, Liu X B, et al. Dynamical stability of cantilevered pipe conveying fluid with inerter-based dynamic vibration absorber[J]. Computer Modeling in Engineering and Sciences, 2020, 125(2): 495-514.
[20] Zhou J S, Shen G, Zhang H, et al. Application of modal parameters on ride quality improvement of railway vehicles[J]. Vehicle System Dynamics, 2008, 46: 629-641.
[21] 曾京, 罗仁. 考虑车体弹性效应的铁道客车系统振动分析[J].铁道学报, 2007, 29(6): 19-25.
Zeng Jing, Luo Ren. Vibration analysis of railway passenger car systems by considering flexible carbody effect[J]. Journal of the China Railway Society, 2007, 29(6):19-25.
[22] Shi H L, Luo R, Wu P B, et al. Influence of equipment excitation on flexible carbody vibration of EMU[J]. Journal of Modern Transportation, 2014, 22(4): 195-205.
[23] 孙方遒, 谷爱军, 刘维宁. 钢轨长实体模型在不同频段的振动及传递特性分析[J]. 铁道学报, 2013, 35(2): 81-86.
Sun Fangqiu, Gu Aijun, Liu Weining. A Study on vibration and transmission characteristics of long solid models under different frequencies[J]. Journal of the China Railway Society, 2013, 35(2): 81-86.
[24] 周伟浩, 文永蓬, 尚慧琳等. 轨道车辆车体半主动式磁流变吸振器的减振特性研究[J]. 振动与冲击, 2018, 37(16): 124-134.
Zhou Weihao, Wen Yongpeng, Shang Huilin, et al. A study on vibration reduction characteristics of semi-active magnetorheological vibration absorbers for vehicle bodies[J]. Journal of Vibration and Shock, 2018, 37(16): 124-134.
[25] 孙倩, 文永蓬, 纪忠辉等. 城市轨道车辆车体复合吸振器建模与仿真[J]. 振动与冲击, 2020, 39(21): 203-210.
Sun Qian, Wen Yongpeng, Ji Zhonghui, et al. Modeling and simulation of composite vibration absorber for urban rail vehicle body[J]. Journal of Vibration and Shock, 2020, 39(21): 203-210.. Study on the vibration suppression method of urban railway vehicles based on a composite dynamic vibration absorber[J]. MATEC Web of Conferences, 2019, 296: 01010.
[26] 秦美娟, 金肖玲, 陈志强等. 具惯容离心摆的轴系结构轴向振动减振分析[J]. 振动与冲击, 2018, 37(22): 36-42.
Qin Meijuan, Jin Xiaoling, Chen Zhiqiang, et al. Axial vibration reduction of a shaft structure using a centrifugal pendulum absorber with inerters[J]. Journal of Vibration and Shock, 2018, 37(22): 36-42.
[27] De D D, Impollonia N, Ricciardi G. Soil-dependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper[J]. Soil Dynamics and Earthquake Engineering, 2018, 105: 37-53.
[28] 李壮壮, 申永军, 杨绍普等. 基于惯容-弹簧-阻尼的结构减振研究[J]. 振动工程学报, 2018, 31(6): 1061-1067.
Li Zhuangzhuang, Shen Yongjun, Yang Shaopu, et al. Study on vibration mitigation based on inerter-spring-damping structure[J]. Journal of Vibration Engineering, 2018, 31(6): 1061-1067.
[29] Wang X R, He T, Shen Y J, et al. Parameters optimization and performance evaluation for the novel inerter-based dynamic vibration absorbers with negative stiffness[J]. Journal of Sound and Vibration, 2019, 463: 114941.
[30] 彭海波, 申永军, 杨绍普. 一种含负刚度元件的新型动力吸振器的参数优化[J]. 力学学报, 2015, 47(2): 320-327.
Peng Haibo, Shen Yongjun, Yang Shaopu, Parameters optimization of a new type of dynamic vibration absorber with negative stiffness[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 320-327.
[31] Shen Y J, Wang X R, Yang S P, et al. Parameters optimization for a kind of dynamic vibration absorber with negative stiffness[J]. Mathematical Problems in Engineering, 2016, 2016: 1-10.
[32] 王孝然, 申永军, 杨绍普等. 含负刚度元件的三要素型动力吸振器的参数优化[J]. 振动工程学报, 2017, 30(2): 177-184.
Wang Xiaoran, Shen Yongjun, Yang Shaopu, et al. Parameter optimization of three-element type dynamic vibration absorber with negative stiffness[J]. Journal of Vibration Engineering, 2017, 30(2): 177-184.
[33] Shen Y J, Peng H B, Li X H, et al. Analytically optimal parameters of dynamic vibration absorber with negative stiffness[J]. Mechanical Systems and Signal Processing, 2017, 85: 193-203.
[34] Flannelly W G. Dynamic antiresonant vibration isolator[P]. U.S: Patent 3322379, 1967.
[35] Rita A D, Mcgarvey J H, Jones R. Helicopter rotor isolation evaluation utilizing the dynamic antiresonant vibration isolator[J]. Journal of the American Helicopter Society, 1978, 23(1): 22-29.
[36] Desjardins R A, Hooper W E. Antiresonant rotor isolation for vibration reduction[J]. Journal of the American Helicopter Society, 1980, 25(3): 46-55.
[37] Halwes D R, Simmons W A . Vibration suppression system[P]. U.S: Patent 4236607, 1980.
[38] Liu N, Li C, Yin C, et al. Application of a dynamic antiresonant vibration isolator to minimize the vibration transmission in underwater vehicles[J]. Journal of Vibration and Control, 2017, 24(17): 3819-3829.
[39] 汪正兴, 任文敏, 陈开利. 斜拉索杠杆质量减振器的减振分析[J]. 工程力学, 2007, 11: 153-157.
Wang Zhengxing, Ren Wenmin, Chen Kaili. Analysis on inclined cable vibration suppression using lever mass damper[J]. Engineering mechanics, 2007, 11: 153-157.
[40] Zang Jian, Yuan Tianchen, Lu Zeqi, et al. A lever-type nonlinear energy sink[J]. Journal of Sound and Vibration, 2018, 437: 119-134.
[41] 刘建武, 叶茂, 谢秋林. 基于杠杆原理阻尼器关键机理和有限元分析[J]. 华南地震, 2019, 39(4): 98-103.
Liu Jianwu, Ye Mao, Xie Qiujin. Key Mechanism and Finite Element Analysis of Damper Based on Lever Principle[J]. South china journal of seismology, 2019, 39(4): 98-103.
[42] 邢昭阳, 申永军, 邢海军等. 一种含放大机构的负刚度动力吸振器的参数优化[J]. 力学学报, 2019, 51(3): 894-903.
Xing Zhaoyang, Shen Yongjun, Xing Haijun, et al. Parameters optimization of a dynamic vibration absorber with amplifying mechanism and negative stiffness[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 894-903.
[43] 王孝然, 申永军, 杨绍普. 单自由度系统强迫振动下Kelvin模型和Maxwell模型的比较[J]. 石家庄铁道大学学报(自然科学版), 2016, 29(3):70-75.
Wang Xiaoran, Shen Yongjun, Yang Shaopu. A comparison study on kelvin and maxwell model for a forced single degree-of-freedom system[J]. Journal of Shijiazhuang Railway Institute, 2016, 29(3): 70-75.