含放大机构的三要素型动力吸振器的H∞优化

周子博1,申永军1,2,杨绍普1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (5) : 158-165.

PDF(1835 KB)
PDF(1835 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (5) : 158-165.
论文

含放大机构的三要素型动力吸振器的H∞优化

  • 周子博1,申永军1,2,杨绍普1,2
作者信息 +

H∞ optimization of 3-factor type dynamic vibration absorber with amplification mechanism

  • ZHOU Zibo1, SHEN Yongjun1,2, YANG Shaopu1,2
Author information +
文章历史 +

摘要

提出了一种含放大机构的三要素型动力吸振器模型,研究了基于H∞优化准则的系统参数最优解析解。首先,将三要素型黏弹性模型与放大机构引入动力吸振器中,通过拉氏变换得到了系统的解析解。随后,以系统的解析解为研究对象发现该系统存在独立于阻尼比的三个固定点,利用固定点理论将三个固定点调到同一高度得到了动力吸振器的最优调谐比和最优刚度比设计公式。最后依据H∞优化准则通过最小化幅频曲线的峰值得到了系统最优阻尼比设计公式,并通过数值仿真验证了解析解的正确性。与三种经典动力吸振器在简谐激励下进行了对比,证明了本文模型有更好的吸振效果。

Abstract

A new kind of three-element type dynamic vibration absorber (DVA) with force amplification element is presented, where the optimal analytical solution is studied based on H∞ optimization principle. At first, the three-element type viscoelastic model and amplification element are introduced into the dynamic vibration absorber, and the analytical solution is obtained by the Laplace transform method. Then, three fixed points are found in the amplitude-frequency curves of the primary system. The design formulae for the optimal tuning ratio and optimal stiffness ratio of the dynamic vibration absorber are obtained by adjusting the three fixed points to the same height according to the fixed-point theory. Furthermore, the optimal damping ratio is obtained by minimizing the maximum value of the amplitude-frequency curves according to H∞ optimization principle. The correctness of the analytical results is verified by the comparison with numerical simulation. In addition, compared with other three traditional DVAs under harmonic excitation, the results show that the three-element type dynamic vibration absorber with force amplification element has better performance of vibration absorption.

关键词

动力吸振器;放大机构;固定点理论;H&infin / 优化

Key words

dynamic vibration absorber / force amplification element / fixed-point theory / H&infin / optimization

引用本文

导出引用
周子博1,申永军1,2,杨绍普1,2. 含放大机构的三要素型动力吸振器的H∞优化[J]. 振动与冲击, 2022, 41(5): 158-165
ZHOU Zibo1, SHEN Yongjun1,2, YANG Shaopu1,2. H∞ optimization of 3-factor type dynamic vibration absorber with amplification mechanism[J]. Journal of Vibration and Shock, 2022, 41(5): 158-165

参考文献

[1] Frahm H. Device for damping vibrations of bodies[P]. U.S: Patent 0989958, 1911.
[2] Ormondroyd J, Den Hartog J P. The theory of the dynamic vibration absorber. ASME Journal of Applied Mechanics. 1928, 50: 9-22.
[3] Hahnkamm E. The damping of the foundation vibrations at varying excitation frequency. Master of Architecture, 1932, 4: 192-201.
[4] Brock J E. A note on the damped vibration absorber. ASME Journal of Applied Mechanics, 1946, 13(4): A284.
[5] Den Hartog J P. Mechanical vibrations 3th ed. New York: McGraw-Hall Book Company 1947: 112-132
[6] 倪振华. 振动力学. 西安: 西安交通大学出版社, 1989.
   Ni Zhenhua. Vibration Mechanics. Xi’an: Xi’an Jiaotong University Press, 1989.
[7] Ren M Z. A variant design of the dynamic vibration absorber[J]. Journal of Sound and Vibration, 2001, 245(4): 762-770.
[8] Liu K, Liu J. The damped dynamic vibration absorbers: revisited and new result[J]. Journal of Sound and Vibration, 2005, 284(3): 1181-1189.
[9] Liu K, Coppola G. Optimal design of damped dynamic vibration absorber for damped primary systems[J]. Transactions of the Canadian Society for Mechanical Engineering, 2010, 34(1): 119-135.
[10] Asami T, Nishihara O. Analytical and experimental evaluation of an air damped dynamic vibration absorber: design optimizations of the three-element type model. Journal of vibration and acoustics, 1999, 121(3): 334-342.
[11] Asami T, Nishihara O. H2 optimization of the three-element type dynamic vibration absorbers. Journal of Vibration and Acoustics, 2002, 124(4): 583-592.
[12] 赵艳影, 徐鉴. 时滞非线性动力吸振器的减振机理[J]. 力学学报, 2008, 40(1): 98-106.
    Zhao Yanying, Xu Jian. Mechanism analysis of delayed nonlinear vibration absorber[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 98-106.
[13] Almazan J L, Llera J C D L, Inaudi J A, et al. A bidirectional and homogeneous tuned mass damper: a new device for passive control of vibrations[J]. Engineering Structures, 2007, 29(7): 1548-1560.
[14] Agathoklis G, Francesco P. Wind-Induced vibration mitigation in tall buildings using the tuned mass-damper-inerter[J]. Journal of Structural Engineering, 2017, 143(9): 04017127.
[15] Xu K, Bi K M, Han Q, et al. Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study[J]. Engineering Structures, 2019, 182: 101-111.
[16] Yang T Z, Yang X D, Li Y H, et al. Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity[J]. Journal of Vibration and Control, 2013, 20(9): 1293-1300.
[17] Song G B, Zhang P, Li L Y, et al. Vibration control of a pipeline structure using pounding tuned mass damper[J]. Journal of Engineering Mechanics, 2016, 142(6): 04016031.
[18] Zhou K, Xiong F R, Jiang N B, et al. Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink[J]. Nonlinear Dynamics, 2019, 95(2): 1435-1456.
[19] Liu Z Y, Tan X, Liu X B, et al. Dynamical stability of cantilevered pipe conveying fluid with inerter-based dynamic vibration absorber[J]. Computer Modeling in Engineering and Sciences, 2020, 125(2): 495-514.
[20] Zhou J S, Shen G, Zhang H, et al. Application of modal parameters on ride quality improvement of railway vehicles[J]. Vehicle System Dynamics, 2008, 46: 629-641.
[21] 曾京, 罗仁. 考虑车体弹性效应的铁道客车系统振动分析[J].铁道学报, 2007, 29(6): 19-25.
    Zeng Jing, Luo Ren. Vibration analysis of railway passenger car systems by considering flexible carbody effect[J]. Journal of the China Railway Society, 2007, 29(6):19-25.
[22] Shi H L, Luo R, Wu P B, et al. Influence of equipment excitation on flexible carbody vibration of EMU[J]. Journal of Modern Transportation, 2014, 22(4): 195-205.
[23] 孙方遒, 谷爱军, 刘维宁. 钢轨长实体模型在不同频段的振动及传递特性分析[J]. 铁道学报, 2013, 35(2): 81-86.
    Sun Fangqiu, Gu Aijun, Liu Weining. A Study on vibration and transmission characteristics of long solid models under different frequencies[J]. Journal of the China Railway Society, 2013, 35(2): 81-86.
[24] 周伟浩, 文永蓬, 尚慧琳等. 轨道车辆车体半主动式磁流变吸振器的减振特性研究[J]. 振动与冲击, 2018, 37(16): 124-134.
    Zhou Weihao, Wen Yongpeng, Shang Huilin, et al. A study on vibration reduction characteristics of semi-active magnetorheological vibration absorbers for vehicle bodies[J]. Journal of Vibration and Shock, 2018, 37(16): 124-134.
[25] 孙倩, 文永蓬, 纪忠辉等. 城市轨道车辆车体复合吸振器建模与仿真[J]. 振动与冲击, 2020, 39(21): 203-210.
    Sun Qian, Wen Yongpeng, Ji Zhonghui, et al. Modeling and simulation of composite vibration absorber for urban rail vehicle body[J]. Journal of Vibration and Shock, 2020, 39(21): 203-210.. Study on the vibration suppression method of urban railway vehicles based on a composite dynamic vibration absorber[J]. MATEC Web of Conferences, 2019, 296: 01010.
[26] 秦美娟, 金肖玲, 陈志强等. 具惯容离心摆的轴系结构轴向振动减振分析[J]. 振动与冲击, 2018, 37(22): 36-42.
    Qin Meijuan, Jin Xiaoling, Chen Zhiqiang, et al. Axial vibration reduction of a shaft structure using a centrifugal pendulum absorber with inerters[J]. Journal of Vibration and Shock, 2018, 37(22): 36-42.
[27] De D D, Impollonia N, Ricciardi G. Soil-dependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper[J]. Soil Dynamics and Earthquake Engineering, 2018, 105: 37-53.
[28] 李壮壮, 申永军, 杨绍普等. 基于惯容-弹簧-阻尼的结构减振研究[J]. 振动工程学报, 2018, 31(6): 1061-1067.
    Li Zhuangzhuang, Shen Yongjun, Yang Shaopu, et al. Study on vibration mitigation based on inerter-spring-damping structure[J]. Journal of Vibration Engineering, 2018, 31(6): 1061-1067.
[29] Wang X R, He T, Shen Y J, et al. Parameters optimization and performance evaluation for the novel inerter-based dynamic vibration absorbers with negative stiffness[J]. Journal of Sound and Vibration, 2019, 463: 114941.
[30] 彭海波, 申永军, 杨绍普. 一种含负刚度元件的新型动力吸振器的参数优化[J]. 力学学报, 2015, 47(2): 320-327.
    Peng Haibo, Shen Yongjun, Yang Shaopu, Parameters optimization of a new type of dynamic vibration absorber with negative stiffness[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 320-327.
[31] Shen Y J, Wang X R, Yang S P, et al. Parameters optimization for a kind of dynamic vibration absorber with negative stiffness[J]. Mathematical Problems in Engineering, 2016, 2016: 1-10.
[32] 王孝然, 申永军, 杨绍普等. 含负刚度元件的三要素型动力吸振器的参数优化[J]. 振动工程学报, 2017, 30(2): 177-184.
    Wang Xiaoran, Shen Yongjun, Yang Shaopu, et al. Parameter optimization of three-element type dynamic vibration absorber with negative stiffness[J]. Journal of Vibration Engineering, 2017, 30(2): 177-184.
[33] Shen Y J, Peng H B, Li X H, et al. Analytically optimal parameters of dynamic vibration absorber with negative stiffness[J]. Mechanical Systems and Signal Processing, 2017, 85: 193-203.
[34] Flannelly W G. Dynamic antiresonant vibration isolator[P]. U.S: Patent 3322379, 1967.
[35] Rita A D, Mcgarvey J H, Jones R. Helicopter rotor isolation evaluation utilizing the dynamic antiresonant vibration isolator[J]. Journal of the American Helicopter Society, 1978, 23(1): 22-29.
[36] Desjardins R A, Hooper W E. Antiresonant rotor isolation for vibration reduction[J]. Journal of the American Helicopter Society, 1980, 25(3): 46-55.
[37] Halwes D R, Simmons W A . Vibration suppression system[P]. U.S: Patent 4236607, 1980.
[38] Liu N, Li C, Yin C, et al. Application of a dynamic antiresonant vibration isolator to minimize the vibration transmission in underwater vehicles[J]. Journal of Vibration and Control, 2017, 24(17): 3819-3829.
[39] 汪正兴, 任文敏, 陈开利. 斜拉索杠杆质量减振器的减振分析[J]. 工程力学, 2007, 11: 153-157.
    Wang Zhengxing, Ren Wenmin, Chen Kaili. Analysis on inclined cable vibration suppression using lever mass damper[J]. Engineering mechanics, 2007, 11: 153-157.
[40] Zang Jian, Yuan Tianchen, Lu Zeqi, et al. A lever-type nonlinear energy sink[J]. Journal of Sound and Vibration, 2018, 437: 119-134.
[41] 刘建武, 叶茂, 谢秋林. 基于杠杆原理阻尼器关键机理和有限元分析[J]. 华南地震, 2019, 39(4): 98-103.
    Liu Jianwu, Ye Mao, Xie Qiujin. Key Mechanism and Finite Element Analysis of Damper Based on Lever Principle[J]. South china journal of seismology, 2019, 39(4): 98-103.
[42] 邢昭阳, 申永军, 邢海军等. 一种含放大机构的负刚度动力吸振器的参数优化[J]. 力学学报, 2019, 51(3): 894-903.
    Xing Zhaoyang, Shen Yongjun, Xing Haijun, et al. Parameters optimization of a dynamic vibration absorber with amplifying mechanism and negative stiffness[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 894-903.
[43] 王孝然, 申永军, 杨绍普. 单自由度系统强迫振动下Kelvin模型和Maxwell模型的比较[J]. 石家庄铁道大学学报(自然科学版), 2016, 29(3):70-75.
    Wang Xiaoran, Shen Yongjun, Yang Shaopu. A comparison study on kelvin and maxwell model for a forced single degree-of-freedom system[J]. Journal of Shijiazhuang Railway Institute, 2016, 29(3): 70-75.

PDF(1835 KB)

Accesses

Citation

Detail

段落导航
相关文章

/