半球谐振子固有刚性轴方位角测量方法与仿真研究

朱蓓蓓1,楚建宁2,秦琳1,王宜新2,陈肖2,汪学方2,许剑锋2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (5) : 166-172.

PDF(2259 KB)
PDF(2259 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (5) : 166-172.
论文

半球谐振子固有刚性轴方位角测量方法与仿真研究

  • 朱蓓蓓1,楚建宁2,秦琳1,王宜新2,陈肖2,汪学方2,许剑锋2
作者信息 +

Measurement method and simulation for azimuth angle of normal-mode  axis of hemispherical resonator

  • ZHU Beibei1, CHU Jianning2, QIN Lin1, WANG Yixin2, CHEN Xiao2, WANG Xuefang2, XU Jianfeng2
Author information +
文章历史 +

摘要

半球谐振子固有刚性轴方位角测量是谐振子制造及调平等工艺过程的重要基础。本文首先对半球谐振子固有刚性轴方位角的测定方法进行了理论分析,其次开展了基于位置激励的半球谐振子谐响应仿真研究,模拟了固有刚性轴位置的测定过程,最后通过设计试验,采用非接触式声波激励,激光多普勒测振仪采集唇缘不同位置的振动信号,完成了半球谐振子固有刚性轴方位角的测定。该方法的角度分辨率优于1°,结果表明:其固有频率主轴方位角的辨识误差约为4.4%,具有良好的可行性,该方法装置简单、便于操作,对半球谐振子初期研制过程中固有刚性轴方位角的精确定位具有重要的参考意义。

Abstract

The Measurement of hemispherical resonator normal-mode axis azimuth is basic for its fabrication and adjustment. Firstly, determination method of the normal-mode axis azimuth was theoretically analyzed. Secondly, based on position excitation, harmonic response simulation of the hemispherical resonator was carried out, measurement process of the normal-mode axis azimuth was simulated. Finally, experimental scheme was designed, normal-mode of hemispherical resonator is excited by the non-contact acoustic excitation, vibration signals at different positions of the lip edge are collected by laser Doppler vibrometer. Angular resolution of the method is better than 1°. The experimental results show that the measurement error of the azimuth angle is about 4.4%. The method is feasible, simple and easy to operate. It is significant for research of improving the hemispherical resonator’s performance.

关键词

半球谐振子 / 固有刚性轴 / 谐响应仿真 / 声激励

Key words

hemispherical resonator / normal-mode axis / harmonic simulation / acoustic excitation

引用本文

导出引用
朱蓓蓓1,楚建宁2,秦琳1,王宜新2,陈肖2,汪学方2,许剑锋2. 半球谐振子固有刚性轴方位角测量方法与仿真研究[J]. 振动与冲击, 2022, 41(5): 166-172
ZHU Beibei1, CHU Jianning2, QIN Lin1, WANG Yixin2, CHEN Xiao2, WANG Xuefang2, XU Jianfeng2. Measurement method and simulation for azimuth angle of normal-mode  axis of hemispherical resonator[J]. Journal of Vibration and Shock, 2022, 41(5): 166-172

参考文献

[1] ROZELLE D M. The hemispherical resonator gyro: from wineglass to the planets. Proceeding of the 19th AAS/AIAA space flight mechanics meeting; 2009 Feb 8-12; Savannah, USA, 2009.p.1157-78.
[2] DZHANDZHGAVA G I, BAKHONIN K A, VINOGRADOV G M, et al. Strapdown Inertial Navigation System Based on a Hemispherical Resonance Gyro. Gyroscope and Navigation. 2010, 1, 91-97.
[3] MEYER A D, ROZELLE D M. Milli-HRG inertial navigation system. Gyroscope and Navigation 2012;3(4):24–9.
[4] 彭慧,方针,谭文跃,等.半球谐振陀螺发展的技术特征[J].导航定位与授时,2019,6(04):108-114.
PENG H, FANG Z, TAN W Y, et al. The Technical Characteristics of Hemispherical Resonator Gyro Development [J]. Navigation Positioning and Timing, 2019, 6 (04): 108-114.
[5] LUNIN B S, MATVEEV V A, BASARAB M A, Volno-voi tverdotel’nyi giroskop. Teoriya i tekhnologiya (Solid-State Wave Gyroscope. Theory and Technology), Moscow: Radio Technical, 2014.
[6] YU H. Vibration character analysis and calculation for hemispherical resonator gyro [J]. Applied Mechanics and Matetrials,2013,271(1),1224-1228.
[7] 李绍良,杨浩,夏语,等. 基于幅频响应特性的半球谐振子频率裂解与固有刚度轴方位角测定方法[J]. 飞控与探测,2020.
LI S L, YANG H, XIA Y, et al. Measurement Method of Hemispherical Resonator Frequency SplittingMeand Normal-Mode Axis Azimuth Based on Amplitude Frequency Response Characteristics [J]. Flight Control and Detection, 2020 (in Chinese).
[8] 马特维耶夫BA,利帕特尼克服BИ,阿廖欣AB,等.固体波动陀螺[M].北京:国防工业出版社.2009.
MATVEEV V A, LIPATNIKOV V I, ALEKIN A V, et al. Solid state wave gyro [M]. Beijing: National Defence Industry Press, 2009 (in Chinese).
[9] LYNCH D D. MATTHEWS A, Varty T, et al. Innovative Mechanization to Optimize Inertial Sensors for High or Low Rate Operations. In Proceedings of Symposium Gyro Technology, Stuttgart Germany, 16–17 September 1997.
[10]  XI X, WU X Z, ZHANG Y M, et al. A study on Q factor of the trimmed resonator for vibratory cupped gyroscopes[J]. Sensors and Actuators: A. Physical,2014,218.
[11] LIN Z, FU M Y, DENG Z H, et al. Frequency split elimination method for a solid-state vibratory angular rate gyro with an imperfect axisymmetric-shell resonator. [J]. Sensors (Basel, Switzerland),2015,15(2).
[12] 李巍,金鑫,任顺清. 半球谐振陀螺仪频率裂解及固有刚性轴的测试方法[J].传感技术学报,2016,29 (3):338-342.
LI W, JIN X, REN S Q. Measurement of frequency splitting and inherent rigidity shaft of hemispherical resonator gyro [J], Chinese Journal of Sensors and Actuators, 2016, 29 (3): 338-342 (in Chinese).
[13] BATARONOV I L, SHUNIN G E, KOSTRYUKOV S A,et al. Effect of Piezoelectric Transducers on the Resonator Frequencies of a Hemispherical Resonator Gyroscope[J]. Bulletin of the Russian Academy of Sciences: Physics,2019,83(9).

PDF(2259 KB)

Accesses

Citation

Detail

段落导航
相关文章

/