非线性动力方程的一种改进精细积分单步方法

刘冬兵1,王永2,李博文3,奕仲飞4,张磊4,黎慧2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (5) : 182-188.

PDF(950 KB)
PDF(950 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (5) : 182-188.
论文

非线性动力方程的一种改进精细积分单步方法

  • 刘冬兵1,王永2,李博文3,奕仲飞4,张磊4,黎慧2
作者信息 +

An improved precise integration single-step method for nonlinear dynamic equations

  • LIU Dongbing1, WANG Yong2, LI Bowen3, YI Zhongfei4, ZHANG Lei4, LI Hui2
Author information +
文章历史 +

摘要

微分求积法和单步块方法都是单步多级数值方法,但是直接应用于求解非线性动力方程时的计算量比较巨大,为此文中提出了一种基于单步块方法的改进精细积分单步方法。结合精细积分法,该方法采用s级的单步块方法的第s个方程对Duhamel积分项进行数值积分。具体采用四阶Runge-Kutta法获得待求变量的预估值,并采用新四点积分公式计算Duhamel积分项。相对于现有的单步方法,本文提出的改进算法在数值精度和稳定性上更优。通过非线性动力方程的典型算例验证了本文算法的优势。

Abstract

Differential quadrature method and single-step block method are both single-step and multi-level numerical methods, but they have a huge amount of calculation when they are directly applied to solve nonlinear dynamic equations. Therefore, an improved precise integration single-step method based on single-step block method is proposed in this paper. Combined with the precise integration method, this method uses the s-th equation of single-step block method of s-stage to conduct numerical integration of Duhamel integral term. Specifically, the fourth-order Runge Kutta method is used to obtain the estimated values of the variables, and the Duhamel integral term is calculated by the new four-point integral formula. Compared with the previous single-step method, the improved algorithm proposed in this paper has better numerical accuracy and stability. The advantages of the proposed algorithm are verified by typical examples of nonlinear dynamic equations.

关键词

非线性;精细积分法;单步块方法;Padé / 逼近;预估-校正

Key words

nonlinearity / precise integration method / single-step block method / Padé / approximation / predictor-corrector

引用本文

导出引用
刘冬兵1,王永2,李博文3,奕仲飞4,张磊4,黎慧2. 非线性动力方程的一种改进精细积分单步方法[J]. 振动与冲击, 2022, 41(5): 182-188
LIU Dongbing1, WANG Yong2, LI Bowen3, YI Zhongfei4, ZHANG Lei4, LI Hui2. An improved precise integration single-step method for nonlinear dynamic equations[J]. Journal of Vibration and Shock, 2022, 41(5): 182-188

参考文献

[1] 钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报,1994, 34(02): 131-136.
ZHONG Wanxie. On precise time integration method for structural dynamics[J]. Journal of Dalian University of Technology,1994, 34(02): 131-136.
[2] 汪梦甫, 周锡元. 结构动力方程的高斯精细时程积分法[J]. 工程力学,2004, 21(04): 13-16.
WANG Mengfu, Zhou Xiyuan. Gauss precise time-integration of structural dynamic analysis[J]. Engineering mechanics, 2004, 21(04): 13-16
[3] Zhang S, Deng Z, Li W. A precise Runge-Kutta integration and its application for solving nonlinear dynamical systems[J]. Applied Mathematics and Computation, 2007, 184(2): 496 -502.
[4] 王海波, 余志武, 陈伯望. 非线性动力分析避免状态矩阵求逆的精细积分多步法[J]. 振动与冲击,2008,27(04): 105-107.
WANG Haibo, Yu Zhiwu, Chen Bowang. Precise integration multi-step method for nonlinear dynamic equations to avoid calculating inverse of state matrix[J]. Journal of Vibration and Shock, 2008, 27(04): 105-107.
[5] 王海波, 陈晋, 李少毅. 用于非线性动力分析的一种高效精细积分单步法[J]. 振动与冲击,2017, 36(15): 158-162.
WANG Haibo, Chen Jin, Li Shaoyi. An efficient precise integration single-step method for nonlinear dynamic analysis[J]. Journal of Vibration and Shock, 2017, 36(15): 158-162.
[6] 王  永, 马  骏, 李靖翔, 等. 非齐次动力学方程的一种精细积分单步方法[J]. 计算力学学报,2020, 37(02): 212-217.
WANG Yong, Ma Jun, Li Jingxiang, et al. A precise integration single step method for nonhomogeneous dynamic equations[J]. Chinese Journal of Computational Mechanics, 2020, 37(02): 212-217.
[7] Li K, Darby A P. A high precision direct integration scheme for nonlinear dynamic systems[J]. Journal of Computational & Nonlinear Dynamics, 2009, 4(4):1724-1732.
[8] 王海波,何崇检.非线性动力分析的广义精细积分法[J].振动与冲击,2018,37(21):220-226.
 WANG Haibo, HE Chongjian. Generalized precise time domain integration method for nonlinear dynamic analysis[J]. Journal of Vibration and Shock, 2018,37(21):220-226.
[9] 王海波,何崇检,贾耀威.线性动力分析的一种通用积分格式[J].振动与冲击,2019,38(10):43-48.
 WANG Haibo, HE Chongjian, JIA Yaowei. General integration Scheme for linear dynamic analysis[J]. Journal of Vibration and Shock,2019,38(10):43-48.
[10] 梅雨辰,李鸿晶,孙广俊.结构动力响应微分求积分析方法的基本特性[J].振动与冲击, 2020, 39(5): 214-221.
MEI Yuchen, LI Hongjing, SUN Guangjun. Basic characteristics of differential quadrature method for dynamic response of structures. JOURNAL OF VIBRATION AND SHOCK, 2020, 39(5): 214-221.
[11] Watts H A, Shampine L F. A -stable block implicit one-step methods[J]. BIT NUMERICAL MATHEMATICS, 1972, 12(2): 252-266.
[12] 袁兆鼎等. 刚性常微分方程初值问题的数值解法[M]. 科学出版社, 1987.
[13] 杜廷松等. 数值分析及实验[M]. 科学出版社, 2012.
[14] 李文成, 邓子辰. 非线性动力系统的自适应显式Magnus数值方法[J]. 应用数学和力学,2008,29(09): 1009-1016.
LI Wencheng, Deng Zichen. Adaptive Explicit Magnus Numerical Method for Nonlinear Dynamical Systems[J]. Applied Mathematics and Mechanics, 2008, 29(09): 1009- 1016.
[15] 李纬华, 王堉, 罗恩. 求解非线性结构动力方程的预估校正-辛时间子域法[J]. 计算力学学报,2014, 31(04): 453-458.
LI Weihua, WANG Yu, LUO En. Predictor-corrector symplectic time-subdomain algorithm for nonlinear dynamic equations [J]. Chinese Journal of Computational Mechanics, 2014, 31(04): 453-458.
[16] Castro R, Kofman E, Cellier F O E. Quantization-based integration methods for delay-differential equations [J]. Simulation Modelling Practice & Theory, 2011, 19(1): 314-336.
[17] 张瑞杰,李青宁,王天利,等. 基于精细积分法的相邻结构弹塑性地震碰撞分析[J]. 振动与冲击, 2018, 37(14): 59-66.
ZHANG Ruijie, LI Qingning, WANG Tianli, et al. Elastic-plastic seismic collision analysis of adjacent structures based on the precise integration method. Journal of Vibration and Shock, 2018, 37(14): 59-66.
[18] 张瑞杰,闫磊. 基于Newmark精细积分结合法的弹塑性结构地震碰撞反应分析[J]. 振动与冲击, 2020, 39(24): 247-253.
ZHANG Ruijie, YAN Lei. Seismic collision response analysis of elastic-plastic structures based on a Newmark precise integral method. Journal of Vibration and Shock, 2020, 39(24): 247-253.

PDF(950 KB)

Accesses

Citation

Detail

段落导航
相关文章

/