隧道衬砌结构减震层效能评定方法的振动台试验研究

闻毓民1,4,信春雷2,3,申玉生1,4,黄泽明2,3,高波1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (5) : 197-207.

PDF(3512 KB)
PDF(3512 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (5) : 197-207.
论文

隧道衬砌结构减震层效能评定方法的振动台试验研究

  • 闻毓民1,4,信春雷2,3,申玉生1,4,黄泽明2,3,高波1
作者信息 +

Shaking table tests for effectiveness evaluation method of damping layer of tunnel lining structure

  • WEN Yumin1,4, XIN Chunlei2,3, SHEN Yusheng1,4, HUANG Zeming2,3, GAO Bo1
Author information +
文章历史 +

摘要

通过大型振动台模型试验研究了减震层效能评定方法的准确性和减震层作用下衬砌结构与最不利的IV级和V级围岩在激振过程中的相互作用。研究结果表明:减震层效能评定方法可以较为准确地评估减震层在地震动力作用下对衬砌结构的作用效果,但随着激振加速度峰值的提高,试验值会与评估值产生偏差,因此对减震层效能评定方法引入地震动力损伤系数以提高其精确度;围岩级别相较于减震层的厚度对衬砌结构的地震响应更具有决定性作用;在中低烈度地震区,减震层对衬砌结构的保护效果较为明显,但减震层存在最优厚度,超过该厚度,衬砌结构遭遇地震时的震动更加强烈,在高烈度地震区,减震层的效果差异在不同围岩中逐渐不再明显;减震层的存在改变了衬砌结构的自振特性,让衬砌与围岩之间在地震动力作用下有一定的刚性位移裕度,减少了相对位移的幅值。

Abstract

Using shaking table model tests, the accuracy of the evaluation method for damping layer and the interaction between the lining structure and grade IV as well grade V surrounding rock with seismic excitation were researched, which were the most adverse surrounding rock condition. The results show that: the evaluation method can accurately assess the seismic effect of damping layer acting on lining structure, but the test value will deviate from the evaluation value with the increase of peak excitation acceleration. Therefore, a seismic reduction coefficient is introduced to improve the precision of the evaluation method. Further, the grade of surrounding rock plays a more decisive role than the thickness of the damping layer in the seismic response of the lining structure. Besides, in the medium and low-intensity earthquake zones, the protective effect of the damping layer is obvious, but the damping layer has an optimal thickness, beyond which the vibration of the lining structure will be more acute. In terms of the high-intensity earthquake zones, the difference in the protective effect of damping layer is no longer obvious. In addition, damping layer changes the vibration characteristic of lining structure, it creates a rigid displacement margin between the lining structure and surrounding rock, which can reduce the maximum relative displacement with seismic excitation.

关键词

隧道工程 / 评定方法 / 优化措施 / 减震层 / 强震

Key words

tunnel engineering / evaluation method / optimization measure / damping layer / strong earthquake

引用本文

导出引用
闻毓民1,4,信春雷2,3,申玉生1,4,黄泽明2,3,高波1. 隧道衬砌结构减震层效能评定方法的振动台试验研究[J]. 振动与冲击, 2022, 41(5): 197-207
WEN Yumin1,4, XIN Chunlei2,3, SHEN Yusheng1,4, HUANG Zeming2,3, GAO Bo1. Shaking table tests for effectiveness evaluation method of damping layer of tunnel lining structure[J]. Journal of Vibration and Shock, 2022, 41(5): 197-207

参考文献

[1] 高波,王峥峥,袁松,等.汶川地震公路隧道震害启示[J].西南交通大学学报,2009,44(3):336-342.
GAO Bo, WANG Zheng-zheng, Yuan Song, et al. Lessons Learnt from Damage of Highway Tunnels in Wenchuan Earthquake[J]. Journal of Southwest Jiaotong Univeristy, 2009, 44 (3): 336-342.
[2] 崔光耀,伍修刚,王明年,等.汶川8.0级大地震公路隧道震害调查与震害特征[J].现代隧道技术,2017,54(2):9-16.
CUI Guang-yao, WU Xiu-gang, WANG Ming-nian, et al. Earthquake Damages and Characteristics of Highway Tunnels in the 8.0-Magnitude Wenchuan Earthquake [J]. Modern Tunnelling Technology, 2017, 54 (5): 9-16.
[3] 信春雷.穿越断层隧道结构地震动破坏机理与抗减震措施研究[D].成都:西南交通大学,2015.
XIN Chun-lei. Aseismic and Damping Measures Research for Fault-crossing Tunnel Structures based on seismic damage mechanism [D]. Chengdu: Southwest Jiaotong University, 2015.
[4] 王勤彩,王中平,张金川,等.2010年4月玉树Ms7.3地震序列的断层结构[J].地球物理学报,2015,58(6):1931-1940.
WANG Qin-cai, Wang Zhong-ping, ZHANG Jin-chuan, et al. Fault structure of Ms7.3 Yushu Earthquake Sequence in April, 2010[J]. Chinese Journal of Geophysics, 2015, 58 (6): 1931-1940.
[5] 段虎荣,周仕勇,李闰,等.芦山地震断层的滑动分布与汶川地震断层的关系[J].地球物理学报,2020,63(1):210-222.
DUAN Hu-rong, ZHOU Shi-yong, LI Run, et al. Relationship Between the Slip Distribution of the Lushan Earthquake Fault and the Wenchuan Earthquake Fault[J]. Chinese Journal of Geophysics, 2020, 63 (1): 210-222.
[6] LIU Xin, CHU Ri-sheng, ZENG Xiang-fang. Rupture processes and Coulomb stress changes of the 2017 Mw 6.5 Jiuzhaigou and 2013 Mw 6.6 Lushan earthquakes [J]. Earth Planets and Space, 2020, 71: 81.
[7] 尹欣欣,郭安宁,赵韬,等.四川长宁Ms6.0地震区域构造应力场特征分析[J].地震工程学报,2019,41(5):1215-1220.
YIN Xin-xin, GUO An-ning, ZHAO Tao, et al. Characteristics of the Regional Tectonic Stress Field of the Changning Ms6.0 Earthquake, Sichuan Province[J]. China Earthquake Engineering Journal, 2019, 41 (5): 1215-1220.
[8] 张顶立.隧道及地下工程的基本问题及其研究进展[J].力学学报,2017,49(1):3-21.
ZHANG Ding-li. Essential Issues and Their Research Progress in Tunnel and Underground Engineering[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49 (1): 3-21.
[9] 张顶立,孙振宇,侯艳娟.隧道支护结构体系及其协同作用[J].力学学报,2019,51(2):577-593.
ZHANG Ding-li, SUN Zhen-yu, HOU Yan-juan. Tunnel Support Structure System and its Synergistic Effect [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51 (2): 577-593.
[10] 王秋懿,杨奎,毛金龙,等.九度地震区公路隧道二次衬砌结构抗震综合措施研究[J].现代隧道技术,2019,56(5):42-49.
WANG Qiu-yi, YANG Kui, MAO Jin-long, et al. Study on the Comprehensive Aseismic Measures for the Secondary Lining Structure of Highway Tunnels in Nine-degree Seismic Region [J]. Modern Tunnelling Tehnology, 2019, 56 (5): 42-49.
[11] XIN Chun-lei, GAO Bo. Shaking Table Tests on Seismic Damage Mechanism of Lining Structures in Mountain Highway[J]. Electronic Journal of Geotechnical Engineering, 2014, 19 (W): 6795-6806.
[12] 王芳其.穿越次级断层隧道地震动力响应及减震层效果分析[J].公路交通技术,2018,34(2):68-74.
WANG Fang-qi. Analysis on Seismic Dynamic Response and Effect of Shock Absorption Layer of Tunnels Passing Through the Secondary Fault [J]. Technology of Highway and Transport, 2018, 34(2): 68-74.
[13] 信春雷,高波,王英学,等.跨断层隧道可变形抗减震措施振动台试验研究[J].岩土力学,2015,36(4):1041-1049.
XIN Chun-lei, GAO Bo, WANG Ying-xue, et al. Shaking Table Tests on Deformable Aseismic and Damping Measures for Fault-crossing Tunnel Structures[J]. Rock and Soil Mechanics, 2015, 36 (4): 1041-1049.
[14] 范凯祥,申玉生,高波,等.穿越软硬围岩隧道设置减震层振动台试验研究[J].土木工程学报,2019,52(9):109-120.
FAN Kai-xiang, SHEN Yu-sheng, Gao Bo, et al. Shaking Table Test on Damping Layer Applied in Tunnel Crossing Soft and Hard Surrounding Rock[J]. China Civil Engineering Journal, 2019, 52 (9): 109-120.
[15] 崔光耀,王李斌,王明年,等.强震区隧道软岩洞口段刚柔并济抗减震措施模型试验研究 [J].振动工程学报,2019,32(1):29-36.
CUI Guang-yao, WANG Li-bin, WANG Ming-nian, et al. Model Test Study of Rigid-flexible Combined Anti-seismic Measures of Soft Rock Tunnel Portal in Meizoseismal Area[J]. Journal of Vibration Engineering, 2019, 32 (1): 29-36.
[16] 胡志平,魏雪妮,张鹏,等.EPS颗粒-黄土混合土减震层对黄土地区隧道衬砌结构的减震作用[J].建筑科学与工程学报,2017,34(3):103-111.
HU Zhi-ping, WEI Xue-ni, ZHANG Peng, et al. Damping Effect of Shock Absorption Layer of EPS Bead-loess Mixture to Tunnel Lining Structure in Loess Area[J]. Journal of Architecture and Civil Engineering, 2017, 34 (3): 103-111.
[17] 侯森,陶连金,李书龙,等.山岭隧道洞口段设置减震层的振动台模型试验研究[J].世界地震工程,2014,30(3):187-195.
HOU Sen, TAO Lian-jin, LI Shu-long, et al. Shaking Table Test for Dynamic Response in Portal Section of Mountain Tunnel with Shock Absorption Layer[J]. World Earthquake Engineering, 2014, 30 (3): 187-195
[18] 信春雷,高波,周佳媚,等.跨断层隧道设置常规抗减震措施振动台试验研究[J].岩石力学与工程学报,2014,33(10):2047-2055.
XIN Chun-lei, GAO Bo, ZHOU Jia-mei, et al. Shaking Table Tests of Conventional Anti-seismic and Damping Measures on Fault-crossing Tunnels [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (10): 2047-2055.
[19] Xin, C.L., Wang, Z.Z., Gao B. Shaking table tests on seismic response and damage mode of tunnel linings in diverse tunnel-void interaction states [J]. Tunnelling and Underground Spance Technology, 2018, (77): 295-304.
[20] Xin, C.L., Wang, Z.Z., Zhou J.M., et al. Shaking table tests on seismic behavior of polypropylene fiber reinforced concrete tunnel lining [J]. Tunnelling and Underground Spance Technology, 2019, (88): 1-15.
[21] 信春雷, 高波, 周佳媚, 等. 跨断层隧道抗减震措施性能振动台试验研究[J]. 岩土工程学报, 2014, 36(8): 1414-1422.
XIN Chun-lei, GAO Bo, ZHOU Jia-mei, et al. Shaking table tests on performances of anti-seismic and damping measures for fault-crossing tunnel structures [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1414-1422.
[22] Xin, C.L., Wang, Z.Z.,Yu, J. The evaluation on shock absorption performance of buffer layer around the cross section of tunnel lining [J]. Soil Dynamics and Earthquake Engineering, 2020, 131: 106032.
[23] Kim, D. S., Konagai, K. Seismic isolation effect of a tunnel covered with coating material [J]. Tunnelling and Underground Space Technology. 2000, 15(4): 437-443.
[24] Kim, D. S., Konagai, K. Key parameters governing the performance of soft tunnel coating for seismic isolation [J]. Earthquake engineering and structural dynamics. 2000, 30, 1333-1343.
[25] GB/T 51336-2018.地下结构抗震设计标准[S].北京:中国建筑工业出版社,2018.
GB/T 51336-2018. Standard for seismic design of underground structures [S]. Beijing: China Architecture & Building Press, 2018.
[26] Konagai, K., Takatsu, S., Kanai, T., et al. Kizawa tunnel cracked on 23 October 2004 Mid-Niigata earthquake: An example of earthquake-induced damage to tunnels in active-folding zones [J]. Soil dynamics and earthquake engineering. 2009, 29(2): 394-403.

PDF(3512 KB)

Accesses

Citation

Detail

段落导航
相关文章

/