基于传声器阵列的低速空腔噪声控制实验研究

马瑞轩1,2,李征初1,宋玉宝1,王勋年1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (5) : 267-272.

PDF(1981 KB)
PDF(1981 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (5) : 267-272.
论文

基于传声器阵列的低速空腔噪声控制实验研究

  • 马瑞轩1,2,李征初1,宋玉宝1,王勋年1,2
作者信息 +

Low-speed cavity noise control tests based on microphone array

  • MA Ruixuan1,2, LI Zhengchu1, SONG Yubao1, WANG Xunnian1,2
Author information +
文章历史 +

摘要

基于相位传声器阵列在声学风洞中测量了低速空腔流动中主要噪声源的分布特性,提出了一种新的评估气动声源强度的计算方法。通过在空腔前后缘加装锯齿板和阻挡板的方式探索了空腔噪声抑制策略,并且比较了不同措施的降噪效果。结果表明:低速空腔流动噪声主要来自于剪切层与空腔后壁的相互作用;锯齿板以沿来流方向安装在前缘对空腔噪声控制效果最好,且锯齿越密集,噪声抑制效果越明显;阻挡板对空腔噪声控制效果不理想。

Abstract

The primary noise sources distribution of the low-speed cavity flow is measured in the aeroacoustic wind tunnel using the phase microphone array, with which a new method for evaluating the intensity of aerodynamic sound sources is proposed. The suppression strategy of cavity noise is explored by installing sawtooth panel and straight panel on the front and rear edges of the cavity, and the noise reduction effects of different measures are compared. The results show that the low-speed cavity flow noise mainly comes from the interaction between the shear layer and the rear edge of the cavity. The sawtooth panel installed along the incoming flow direction on the front edge has the best effect on cavity noise control. Furthermore, the denser the sawteeth, the better it works for the noise suppression. The effect of the straight panel on cavity noise control is not ideal.

关键词

传声器阵列 / 空腔流动 / 风洞实验 / 噪声抑制

Key words

phase microphone array / cavity flow / wind tunnel test / noise suppression

引用本文

导出引用
马瑞轩1,2,李征初1,宋玉宝1,王勋年1,2. 基于传声器阵列的低速空腔噪声控制实验研究[J]. 振动与冲击, 2022, 41(5): 267-272
MA Ruixuan1,2, LI Zhengchu1, SONG Yubao1, WANG Xunnian1,2. Low-speed cavity noise control tests based on microphone array[J]. Journal of Vibration and Shock, 2022, 41(5): 267-272

参考文献

[1] Rossiter J E. Wind Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds [R]. Aeronautical Research Council, R&M3438, 1964.
[2] Krishnamurty K. Acoustic radiation from two-dimensional rectangular cutouts in aerodynamic surfaces [J]. Naca Tech Note, 1955, 24(28): 4620-5.
[3] Maull, D.J., and East, L.F. Three-dimensional Flow in Cavities [J]. Journal of Fluid Mechanics, 1963, 16: 620-632.
[4] Rowley C W, Williams D R. Dynamics and control of high-reynolds-number flow over open cavities [J]. Annual Review of Fluid Mechanics, 2005, 38(1): 251-276.
[5] Colonius, T. An Overview of Simulation, Modeling, and Active Control of Flow Acoustic Resonance in Open Cavities [R]. AIAA paper 2001–0076, 2001.
[6] Jr Robert L. Stallings, Plentovich E. B, Tracy M. B, et al.  Measurements of Store Forces and Moments and Cavity Pressures for a box cavity at subsonic and transonic speeds [J]. Evidence & Policy A Journal of Research, 1995, 71(6):894-900.
[7] Kim H J , Aradag S , Knight D D . Two and Three Dimensional Simulations of Supersonic Cavity Flow [C]. Aiaa/ceas Aeroacoustics Conference. 2006.
[8] Crook S D, Lau T C W, Kelso R M. Three-dimensional flow within shallow, narrow cavities [J]. Journal of Fluid Mechanics, 2013, 735: 587-612.
[9] Murray N E, Ukeiley L S. Flow Field Dynamics in Open Cavity Flows [R]. AIAA 2006-2428, 2006.
[10] Schmit R, Raman G. High and low frequency actuation comparison for a weapons bay cavity [J]. International Journal of Aeroacoustics, 2006, 5(4): 395-414.
[11] Zhuang N, Alvi F S, Alkislar M B, et al. AIAA 2003-3101 Aeroacoustic Properties of Supersonic Cavity Flows and Their Control [J]. Journal of the Electrochemical Society, 2003, 44(129):2016-2022.
[12] 杨党国,范召林,李建强,等. 弹舱流动特性数值模拟及风洞试验研究[J]. 空气动力学学报,2009, 27(3): 378-383.
YANG Dang-guo, FAN Zhao-lin, LI Jian-qiang, et al. Studies on flow characteristics of cavity by numerical simulation and
wind tunnel test [J]. Acta Aerodynamica Sinica, 2009, 27(3): 378-383.
[13] 杨党国. 内埋武器舱气动声学特性与噪声抑制研究[D]. 中国空气动力研究与发展中心, 2010.
[14] 刘俊,杨党国,王显圣,等. 基于URANS与DDES方法的空腔近场噪声数值研究[J]. 振动与冲击,2016, 35(20): 154-159.
LIU Jun, YANG Dang-guo, Wang Xian-sheng, et al. Numerical simulation of near field cavity noised by URANS and DDES [J]. Journal of Vibration and Shock, 2016, 35(20): 154-159.
[15] 周方奇,杨党国,王显圣,等. 前缘直板扰流对高速空腔的降噪效果分析[J]. 航空学报,2018, 39(4): 128-138.
ZHOU Fang-qi, YANG Dang-guo, Wang Xian-sheng, et al. Effect of leading edge plate on high speed cavity noise control [J]. Acta Aeronautica et Astronautica Sinca, 2018, 39(4): 128-138.
[16] 余培汛,白俊强,郭博智,等. 剪切层形态对开式空腔气动噪声的抑制[J]. 振动与冲击,2015, 34(01): 156-164.
Yu Pei-xun, Bai Jun-qiang, Guo Zhi-bo, et al. Suppression of aerodynamic noise by altering the form of shear in open cavity [J]. Journal of Vibration and Shock, 2015, 34(01): 156-164.
[17] SCHMIT R F, MCGAHA C, TEKELL J, et al. Performance results for the optical turbulence reduction cavity[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2009:1-13.
[18] SCHMIT R F, SEMMELMAYER F, HAVERKAMP M, et al. Analysis of cavity passive flow control using high speed shadowgraph image[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2009:1-13.
[19] SCHMIT R F, SEMMELMAYER F, HAVERKAMP M, et al. Examining passive flow control devices with high speed shadowgraph images around a Mach 1.5 cavity flow field[C]//6th AIAA Flow Control Conference. Reston, VA:AIAA, 2013:1-19.
[20] THANGAMANI V, KNOWLES K, SADDINGTON A J. The effects of scaling on high subsonic cavity flow oscillations and control[C]//18th AIAA/CEAS Aeroacoustics Conference. Reston, VA:AIAA, 2012:1-16.
[21] THANGAMANI V, KNOWLES K, SADDINGTON A J. An investigation of passive control methods for a large scale cavity model in high subsonic flow[C]//19th AIAA/CEAS Aeroacoustics Conference. Reston, VA:AIAA, 2013:1-13.
[22] SADDINGTON A J, KNOWLES K, THANGAMANIET V, et al. Scale effects on the performance of sawtooth spoilers in transonic rectangular cavity flow[J]. Experiments in Fluids, 2016, 57(2):1-12.
[23] SADDINGTON A J, THANGAMANI V, KNOWLES K. Comparison of passive flow control methods for a cavity in transonic flow[J]. Journal of Aircraft, 2016, 53(5):1439-1447.
[24] PANICKAR P, RAMAN G. Understanding the mechanism of cavity resonance suppression using a cylindrical rod in cross-flow[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2008:1-27.
[25] PANICKAR P, RAMAN G. Cavity resonance suppression using high frequency excitation the mystery of the cylinder in crossflow revisited[C]//14th AIAA/CEAS Aeroacoustics Conference. Reston, VA:AIAA, 2008:1-24.
[26] DUDLEY J G, UKEILEY L. Suppression of fluctuating surface pressures in a supersonic cavity flow[C]//5th Flow Control Conference. Reston, VA:AIAA, 2010:1-22.
[27] DUDLEY J G, UKEILEY L. Detached eddy simulation of a supersonic cavity flow with and without passive flow control[C]//20th AIAA Computational Fluid Dynamics Conference. Reston, VA:AIAA, 2011:1-18.
[28] DUDLEY J G, UKEILEY L. Passively controlled supersonic cavity flow using a spanwise cylinder[J]. Experiments in Fluids, 2014, 55(9):1-22.
[29] Dougherty R P. Beamforming in Acoustic Testing [M]. Springer Berlin, Heidelberg, 2002.
[30] Li Y, Smith M, Zhang X. Measurement and control of aircraft landing gear broadband noise [J]. Aerospace Science & Technology, 2012, 23(1): 213-223.
[31] 李征初, 李  勇, 陈正武, 黄  奔, 王勋年. CLEAN-SC算法在风洞声源定位与识别中的应用研究[J]. 实验流体力学,2016, 30(3): 104-109.
LI Zheng-chu, LI Yong, CHENG Zheng-wu,et al.Noise identification and localization in wind tunnel using CLEAN-SC algorithm[J].Journal of Experiments in Fluid Mechanics, 2016, 30(3): 104-109.
[32] 马瑞轩,李文建,左孔成.基于SST-SAS方法与FW-H方程的串列双圆柱数值模拟研究[J].应用力学学报, 2020, 37(03): 1057-1064.
MA Rui-xuan, LI Wen-jian, ZUO Kong-cheng. Numerical simulation of flows around tandem cylinder based on SST-SAS method and FW-H equation [J]. Chinese Joornal of Applied Mechanics, 2020, 37(03): 1057-1064.

PDF(1981 KB)

Accesses

Citation

Detail

段落导航
相关文章

/