快关蝶阀密封副瞬态热及碰撞冲击研究

李树勋1,2,杨玲霞1,2,雒相垚1,2,尹会全1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (5) : 75-82.

PDF(2623 KB)
PDF(2623 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (5) : 75-82.
论文

快关蝶阀密封副瞬态热及碰撞冲击研究

  • 李树勋1,2,杨玲霞1,2,雒相垚1,2,尹会全1,2
作者信息 +

Transient heat and collision impact of sealing pair of fast closing butterfly valve

  • LI Shuxun1,2, YANG Lingxia1,2, LUO Xiangyao1,2, YIN Huiquan1,2
Author information +
文章历史 +

摘要

为准确评估动态升温过程中结构是否安全,基于经典赫兹接触理论、旋转动力学以及碰撞冲击理论,采用数值仿真方法对快关蝶阀分别进行瞬态热-结构耦合分析与瞬态动力学分析研究,对比研究了不同升温速率、不同关闭时间及不同密封面宽度对快关蝶阀结构强度及阀座密封性能的影响规律。研究表明:快关蝶阀的最终热应力和阀座密封面接触压力均随着升温速率的增大而增大,当阀门内壁升温速率小于0.225℃/s时,阀门的结构强度及密封可满足要求;分析快关蝶阀瞬间冲击速度以及快关过程总位移量,并与理论推导得出的数值对比,误差均在5%以内,快关冲击对蝶阀蝶板的影响程度大于阀座,进一步研究得出了冲击速度、撞击面积关键参数对阀门冲击的影响规律。

Abstract

In order to accurately assess whether the structure is safe during the dynamic heating process, based on the classical Hertzian contact theory, rotation dynamics and collision and impact theory, numerical simulation methods are used to conduct transient thermal-structural coupling analysis and transient dynamics analysis of the fast-closing butterfly valve. The effects of different heating rates, different closing times and different sealing surface widths on the structural strength and seat sealing performance of the fast-closing butterfly valve are comparatively studied. Research shows that the final thermal stress and the contact pressure of the valve seat sealing surface of the fast-closing butterfly valve increase with the increase of the heating rate. When the heating rate of the inner wall of the valve is less than 0.225℃/s, the structural strength and sealing of the valve can meet the requirements ; Analyze the instantaneous impact speed of the fast-closing butterfly valve and the total displacement in the fast-closing process, and compare with the theoretically derived values, the error is within 5%. The impact of the fast-closing impact on the butterfly valve disc is greater than the valve seat. The impact law of impact speed and impact area key parameters on valve impact is shown.

关键词

快关蝶阀 / 瞬态热密封 / 升温速率 / 冲击速度 / 撞击面积

Key words

fast closing butterfly valve / transient heat seal / heating rate / impact velocity / impact area

引用本文

导出引用
李树勋1,2,杨玲霞1,2,雒相垚1,2,尹会全1,2. 快关蝶阀密封副瞬态热及碰撞冲击研究[J]. 振动与冲击, 2022, 41(5): 75-82
LI Shuxun1,2, YANG Lingxia1,2, LUO Xiangyao1,2, YIN Huiquan1,2. Transient heat and collision impact of sealing pair of fast closing butterfly valve[J]. Journal of Vibration and Shock, 2022, 41(5): 75-82

参考文献

[1] Kan, B., Chen, L. Numerical analysis of flow field in link rod butterfly valve for high-temperature steam[J] Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42:202.
[2] Muhammad, A.Y. & Abdullah, Nazlin. Failure mode and effect analysis (FMEA) of butterfly valve in oil and gas industry[J] Journal of Engineering Science and Technology, 2016 11. 9-19.
[3] 王振峰,高扬,徐晓亮,等.航天器高温热密封设计方法及性能评价[J].宇航学报,2018,39(07):793-800.
Wang Z, Gao Y, Xu X,et al. Design Method and Performance Evaluation Criteria of Advanced Spacecraft Heat Seal[J]. Journal of Astronautics, 2018, 039(007):793-800.
[4] Shen M, Peng X, Xie L, et al. Deformation characteristics and sealing performance of metallic O-rings for a reactor pressure vessel[J]. Nuclear Engineering and Technology, 2016, 48(2): 533-544.
[5] Gong R, Wang H, Cheng Z, et al. Finite element modeling on local hot banding of sealing ring[J]. Tribology International, 2018, 120: 556-564.
[6] Duran E T, Aksit M F, Ozmusul M. Brush seal structural analysis and correlation with tests for turbine conditions[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(5): 052502.
[7] Gao B C, Meng X K, Shen M X, et al. Transient thermal-mechanical coupling behavior analysis of mechanical seals during start-up operation[C]. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2016, 129(1): 012025.
[8] 彭亦鹏, 陈爱军. 热冲击下带裂纹功能梯度厚壁圆筒的分析[J]. 振动与冲击, 2017(15).
Yipeng P , Aijun C , Sciences S O . Numerical simulation for a functionally graded thick-walled cylinder with cracks under thermal shock[J]. Journal of Vibration and Shock, 2017, 36(15):64-70 and 76.
[9] 张彦博,陈爱军.基于非傅里叶热传导对热冲击下带裂纹厚壁圆筒的分析[J].振动与冲击,2020,39(04):278-283+298.
Yanbo Z , Aijun C , Numerical analysis for non-Fourier thermodynamic response of a thick-walled hollow cylinder with cracks under thermal shock[J]. Journal of Vibration and Shock, 2020, 39(04):278-283 and 298.
[10] 徐自力, 王凯, 方宇, 等. 汽轮机起动过程温升分配对转子热应力的影响[J]. 机械工程学报, 2013, 49(12):136-141.
Xu Z , Wang K , Fang Y , et al. Effect of Temperature Rising Distribution on Thermal Stress of Rotor during Steam Turbine Start-up[J]. Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2013, 49(12):136.
[11] 张雨,张开林,姚远.旋转与热效应对齿轮箱轴向迷宫密封泄漏特性的影响[J].浙江大学学报(工学版),2019,53(09):1656-1662.
Zhang Y , Zhang K , Yao Y. Impact of rotating and thermal effects on leakage performance of gearbox with axial labyrinth seal[J]. Journal of Zhejiang University(Engineering Science), 2019, 53(09):1656-1662.
[12] 高斌超, 孟祥铠, 李纪云等. 机械密封热力耦合有限元模型与密封性能分析[J]. 摩擦学学报,2015,35(05):550-556.
Gao B C , Meng X K , Li J Y , et al. Thermal-Mechanical Coupled Finite Element Model and Seal Performance Analysis of Mechanical Seals[J]. Tribology, 2015.
[13] Fatu A, Hajjam M. Effect of grooved shaft on the rotary lip seal performance in transient condition: Elasto-hydrodynamic simulations[J]. Tribology International, 2016, 93: 411-418.
[14] 黄运生, 邓四二, 张文虎,等. 冲击载荷对铁路轴箱轴承塑料保持架动态性能影响研究[J]. 振动与冲击, 2018.
Huang Y , Deng S , Zhang W , et al. Influence of impact loads on the dynamic characteristics of plastic cages in railway axle bearings[J]. Journal of Vibration & Shock, 2018, 37(1):172-180.
[15] 沈佳兴,徐平,于英华.基于碰撞安全性的泡沫铝填充矿用救生舱优化及性能分析[J].振动与冲击,2020,39(09):248-253.
Shen J , Xu P , Yu Y . optimization and performance analysis of a mine rescue cabin filled with aluminum foam based of crash safetys[J]. Journal of Vibration & Shock, 2020,39(09):248-253.
[16] 张敏,刘敬喜,赵耀,黄诗雯.楔形物垂向撞击船体板的简化解析法研究[J].振动与冲击,2019,38(24):81-84+100.
Zhang M ,Liu J ,Zhao Y ,et al. A simplified analytical method for ship plating subjected to lateral impact by a wedge indenter[J]. Journal of Vibration and Shock, 2019, 38(24):81-84 and 100.
[17] Mikhailova E Y, Tarlakovskii D V, Fedotenkov G V. Transient Contact Problem for Liquid Filled Concentric Spherical Shells and a Rigid Barrier[C].International Conference on Theoretical, Applied and Experimental Mechanics. Springer, Cham, 2018: 389-391.
[18] Zhang L, Yin X, Yang J, et al. Transient impact response analysis of an elastic–plastic beam[J]. Applied Mathematical Modelling, 2018, 55: 616-636.
[19] Liu C, Fujimoto Y, Tanaka Y, et al. Viscosity Transient Phenomenon in Drop Impact Testing of Soft Material[J]. World Journal of Mechanics, 2016,  6(5):181-191.
[20] Rout M, Hota S S, Karmakar A. Transient response of pretwisted delaminated stiffened shell under low velocity impact[J]. International Journal for Computational Methods in Engineering Science and Mechanics, 2018, 19(3): 139-155.
[21] Mao J, Wang W, Zhang J, et al. Numerical investigation on the dynamic behaviors of turbine valve disc-seat impact at low velocity[J]. Journal of Mechanical Science and Technology, 2015, 29(2): 507-515.
[22] 罗从仁,喻健良,董强,闫兴清.高温法兰接头升温速度对垫片应力影响研究[J].化工设备与管道,2016,53(04):1-6.
Luo C, Yu J, Dong Q,Yan X. Study of effect of temperature elevating rate to stress in gasket in flanged connection [J]. Process Equipment & Piping, 2015, 29(2): 507-515.

PDF(2623 KB)

Accesses

Citation

Detail

段落导航
相关文章

/