针对结构-声强耦合腔在边界激励下的响应预报问题,提出了一种基于能量原理的耦合系统响应计算方法。该方法从能量原理出发得到结构-声耦合腔拉格朗日函数形式的动力学方程,根据Rayleigh-Ritz法选择Legendre多项式级数分别将结构位移函数和声场声压函数展开,代入动力学方程并求解得到耦合腔的结构振动和声场声压响应。由于Legendre多项式满足L2内积正交性,简化了方程中高重积分项,计算效率大大提升。以充水矩形腔为例,通过与文献、有限元结果对比验证了本文方法的正确性。并分析了结构边界条件,背腔深度对系统响应的影响,结果表明:结构边界由强约束过渡到弱约束和背腔深度的减小都会导致响应峰值频率向低频偏移,同时背腔深度的减小还会导致由结构传递至声场的能量增加。
Abstract
To predict the response of a coupled structure-acoustic cavity under an external excitation, a response calculation method based on the energy principle is proposed. The dynamical equations of the coupled structure-acoustic cavity are described by the Lagrangian function. The structural displacement and sound pressure are separately expanded by Legendre polynomial according to the Rayleigh-Ritz method. By solving the dynamical equations, the structural vibration and sound pressure of the coupled cavity are obtained. Since the Legendre polynomial satisfies the product orthogonality of L2, the heavily integrated terms in the equation are simplified and the computational efficiency is improved. Taking the strongly coupled water-filled rectangular cavity as an example, the correctness of the method is verified by comparing present method with literature and the finite element results. In addition, the effects on the response of structural boundary conditions and back-cavity depth are analyzed, results show that the transition from a strongly constrained to a weakly constrained structure boundary and the decrease in back-cavity depth both leads to a shift of the response peak frequency to lower frequencies, while the reduction of the back-cavity depth will also lead to an increase in the energy transferred from the structure to the sound field.
关键词
结构-声强耦合 /
响应预报 /
能量原理 /
多项式级数
{{custom_keyword}} /
Key words
structure-acoustic strongly coupling /
response prediction /
energy principle /
polynomial progression
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Hesse C , Vivar Perez J M , Sinapius M . Frequency-independent radiation modes of interior sound radiation: An analytical study[J]. Journal of Sound & Vibration, 2017, 392:31-40.
[2] 玉昊昕, 陈克安, 代海. 直升机模型舱室中的集群式有源噪声控制系统性能研究 [J]. 噪声与振动控制, 2019, 39(01): 89-93.
YU Haoxin, Chen Kean, Dai Hai.Performance study on cluster active noise control system in helicopter cabins[J] , Noise and Vibration Control,2019, 39(01): 89-93.
[3] 章月新,刘剑.基于多通道系统的封闭空间低频噪声主动控制[J].科学技术与工程,2018,18(35): 236-241.
Zhang Yuexin, Liu Jian. Low frequency noise reduction in closed spaces based on multi-channel active noise control system[J]. Science Technology and Engineering,2018,18(35): 236-241.
[4] 苏常伟,朱海潮,谢志敏,等.复杂激励下封闭空腔结构-声耦合场分析[J].海军工程大学学报,2017,29(03):47-52.
Su Changwei, Zhu Haichao, et al. Analysis of vibro-acoustic coupling field in enclosure under complex excitation[J]. Journal of Naval University of Engineering,2017,29(03):47-52.
[5] Bagha A K , Modak S V . Structural sensing of interior sound for active control of noise in structural-acoustic cavities[J]. The Journal of the Acoustical Society of America, 2015, 138(1):11-21.
[6] Pan, Jie. Active control of noise transmission through a panel into a cavity: I. Analytical study [J]. Journal of the Acoustical Society of America, 1990, 87(5): 2098-2108.
[7] Kim S M, Brennan M J. A Compact Matrix Formulation Using the Impedance and Mobility Approach for the Analysis of Structural-Acoustic Systems [J]. Journal of Sound & Vibration, 1999, 223(1): 97-113.
[8] Geng H C, Rao Z S, Han Z S. New modeling method and mechanism analyses for active control of interior noise in an irregular enclosure using piezoelectric actuators[J].The Journal of the Acoustical Society of America, 2003, 113(3).
[9] 张肃,陈南,李普,等.基于小波迦辽金法的复杂封闭空腔结构—声耦合场分析[J].机械工程学报,2008(06):155-160.
Zhang Su, Chen Nan, Li Pu, et al. Analysis of the vibro-acoustic coupling field in complex enclosure based on wavelet-galerkin method[J].Chinese Journal of Mechanical Engineering,2008(06): 155-160.
[10] Du J T, Li W L, Liu Z G, et al. Acoustic analysis of rectangular cavity with general impedance boundary conditions[J]. Journal of Sound & Vibration, 2011, 130(2):807-817.
[11] Du J T , Li W L , Xu H A , et al. Vibro-acoustic analysis of a rectangular cavity bounded by a flexible panel with elastically restrained edges[J]. Journal of the Acoustical Society of America, 2012, 131(4):2799-2810.
[12]陈跃华, 靳国永, 刘志刚, 等. 非规则封闭空间声场建模的Chebyshev-变分法及其固有声学特性分析[J]. 声学学报, 2017, (06):56-64.
Chen Yuehua, Jin Guoyong, Liu Zhigang, et al. Modeling and acoustic analysis of irregular sound enclosure by using Chebyshev-variational method[J]. Acta Acustica, 2017(06):56-64.
[13] Chen Y , Jin G , Shi S , et al. A General Analytical Method for Vibroacoustic Analysis of an Arbitrarily Restrained Rectangular Plate Backed by a Cavity With General Wall Impedance[J]. Journal of Vibration & Acoustics, 2014, 136(3):031015.
[14]Kim S M , Kim J G , Chae S W , et al. A strongly coupled model reduction of vibro-acoustic interaction[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 347(APR.15): 495-516.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}