基于2.5维有限元的有限长波导结构模态密度计算

张淑敏1,圣小珍2,杨世均3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (5) : 90-98.

PDF(2909 KB)
PDF(2909 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (5) : 90-98.
论文

基于2.5维有限元的有限长波导结构模态密度计算

  • 张淑敏1,圣小珍2,杨世均3
作者信息 +

Modal density calculation of finite length waveguide structure based on 2.5D finite element method

  • ZHANG Shumin1, SHENG Xiaozhen2, YANG Shijun3
Author information +
文章历史 +

摘要

模态密度是衡量振动系统贮存能量大小的物理量,同时也是统计能量分析子系统的主要参数之一,其精度能够直接影响系统响应预测的精度;群速度为结构波能量的传播速度,是表征结构波动特性的重要参数。本文针对工程中常见的波导结构,基于2.5维有限元方法计算结构的频散曲线,利用波形置信度概念对频散曲线对应的特征波进行分类,同时给出波导结构特征波群速度的表达式。从波动角度出发,推导了有限长波导结构总的模态密度和不同特征波模态密度的计算公式。以单板和高速列车用铝型材为例,对其波动特性和模态密度进行分析和计算。研究结果表明,随着频率增加,本文方法计算得到的模态密度和其他方法吻合较好。在结构的截止频率处,群速度为零,模态密度无穷大,但在有限频带内的平均模态密度为有限值;结构的某些截止频率附近,群速度和模态密度可能会存在负值,意味着结构波的传播方向和能量的传播方向相反。通过对特征波的识别,可实现不同特征波下的模态密度计算。相关结果可为统计能量分析中相似模态群子系统的划分提供参考依据。

Abstract

Modal density is one of the main parameters of the statistical energy analysis subsystem, which reflects the energy storage capacity of a vibration system. The accuracy of the modal density can directly influence the prediction accuracy of a subsystem. Group velocity is the speed of the energy of propagation wave, which is an important parameter to study the wave characteristics. In this paper, the dispersion curve of the waveguide structure is firstly calculated based on the two-and-half dimensional finite element method. Different waves are categorized by the concept of wave assurance matrix, and expression of the group velocity of different waves is given. Formulations of the total modal density and different characteristic waves are derived. The wave characteristics and modal density are analyzed and calculated for a single panel and an extruded aluminum panel. Results show that with the increase of frequency, the modal density calculated by the method proposed in this paper agrees well with other methods. At cut-on frequencies, the group velocity is zero and the modal density tends to infinite, but the average modal density in the frequency band is a finite value. The group velocity and modal density may become negative near some cut-on frequencies, which means the propagation direction of the waves and the energy of waves are opposite. The modal density of different waves can be obtained after categorized. Some results can provide reference basis for dividing the subsystems of the statistical energy analysis.

关键词

模态密度 / 群速度 / 频散曲线 / 波导结构 / 2.5D有限元法

Key words

modal density / group velocity / dispersion curve / waveguide / 2.5D finite element method

引用本文

导出引用
张淑敏1,圣小珍2,杨世均3. 基于2.5维有限元的有限长波导结构模态密度计算[J]. 振动与冲击, 2022, 41(5): 90-98
ZHANG Shumin1, SHENG Xiaozhen2, YANG Shijun3. Modal density calculation of finite length waveguide structure based on 2.5D finite element method[J]. Journal of Vibration and Shock, 2022, 41(5): 90-98

参考文献

[1] Lyon R H, Dejong R G. Theory and application of statistical energy analysis [M], Butterworth-Heinemann (1995), London.
[2] 姚德源, 王其政. 统计能量分析原理及其应用 [M]. 北京: 北京理工大学出版社, 1995.
 YAO Deyuan, WANG Qizheng. Principle and application of statistical energy analysis [M]. Beijing University of Technology Press (1995), Beijing.
[3] Jean-Loup Christen, Mohamed Ichchou, Bernard Troclet, Olivier Bareille, Morvan Ouisse. Global sensitivity analysis and uncertainties in SEA models of vibroacoustic systems[J]. Mechanical Systems and Signal Processing, 2017, 90.
[4] Xie G, Thompson D J, Jones C J C. Mode count and modal density of structural systems: relationships with boundary conditions[J]. Journal of Sound and Vibration, 2004, 274(3-5):621-651.
[5] Langley R S. The Modal Density and Mode Count of Thin Cylinders and Curved Panels[J]. Journal of Sound and Vibration, 1994, 169(1):43-53.
[6] Erickson L L. Modal densities of sandwich panels: theory and experiment[J]. The Shock and Vibration Bulletin, 1969, 39(3): 1-16.
[7] Clarkson B L, Ranky M F. Modal density of honeycomb plates[J]. Journal of Sound and Vibration, 1983, 91(1):103-118.
[8] Renji K, Nair P S, Narayanan S. Modal density of composite honeycomb sandwich panels [J]. Journal of Sound and Vibration, 1996, 195(5):687-699.
[9] Clarkson B L. The derivation of modal densities from point impedances[J]. Journal of Sound and Vibration, 1981, 77(4):583-584.
[10] Clarkson B L, Pope R J. Experimental determination of modal densities and loss factors of flat plates and cylinders[J]. Journal of Sound and Vibration, 1981, 77(4):535-549.
[11] Zhang J, Xiao X, Sheng X, et al. SEA and contribution analysis for interior noise of a high speed train[J]. Applied Acoustics, 2016, 112:158-170.
[12] 伍先俊, 程广利, 朱石坚. 低阻尼板结构模态密度测试方法[J]. 振动与冲击, 2006(03): 159-161+168+214.
 WU Xianjun, CHENG Guangli, ZHU Shijian. A test method of the modal density of lightly damped plate structure [J]. Journal of Vibration and Shock, 2006(03): 159-161+168+214.
 [13] 宋继强, 王登峰, 马天飞, 卢炳武, 轧浩. 汽车车身复杂子结构模态密度确定方法[J]. 吉林大学学报(工学版), 2009, 39(S2):269-273.
 Song Jiqiang, WANG Dengfeng, MA Tianfei, et al. Calculation method of auto body complex sub-structure modal density [J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(S2): 269-273.
[14] Keswick P R, Norton M P. A comparison of modal density measurement techniques[J]. Applied Acoustics, 1987, 20(2):137-153.
[15] Langley R S. On the Modal Density and Energy Flow Characteristics of Periodic Structures[J]. Journal of Sound and Vibration, 1994, 172(4):491-511.
[16] Cotoni V, Langley R S, Shorter P J. A statistical energy analysis subsystem formulation using finite element and periodic structure theory[J]. Journal of Sound and Vibration, 2008, 318(4-5):1077-1108.
[17] Aalami, B. Waves in Prismatic Guides of Arbitrary Cross Section[J]. Journal of Applied Mechanics, 1973, 40(4):72-72.
[18] Gavri L. Computation of propagative waves in free rail using a finite element technique[J]. Journal of Sound and Vibration, 1995, 185(3):531-543.
[19] Kishori, Lal, Verma. Wave propagation in laminated composite plates[J]. International Journal of Advanced Structural Engineering, 2013.
[20] Kim H, Ryue J, Thompson D J, et al. Application of a wavenumber domain numerical method to the prediction of the radiation efficiency and sound transmission of complex extruded panels[J]. Journal of Sound and Vibration, 2019.
[21] Renno J M, Mace B R. On the forced response of waveguides using the wave and finite element method[J]. Journal of Sound and Vibration, 2010, 329(26): 5474-5488.
[22] Renno J M, Mace B R. Calculating the forced response of two-dimensional homogeneous media using the wave and finite element method[J]. Journal of sound and vibration, 2011, 330(24): 5913-5927.
[23] Finnveden S. Evaluation of modal density and group velocity by a finite element method[J]. Journal of Sound and Vibration, 2004, 273(1-2):51-75.
[24] Sheng X, Jones C J C, Thompson D J. Modelling ground vibration from railways using wavenumber finite- and boundary-element methods[J]. Proceedings of the Royal Society A, 461 (2005) 2043-2070.
[25] Wolf, J. Investigation of Lamb waves having a negative group velocity[J]. Journal of the Acoustical Society of America, 1988, 83(1):122-126.
[26] Yu C. Negative group velocity for waves in a plate[J]. Tsinghua Ence and Technology, 1996, 1(3): p. 250-252.
[27] Mace B R, Manconi E. Wave motion and dispersion phenomena: Veering, locking and strong coupling effects[J]. Journal of the Acoustical Society of America, 2012, 131(2):1015-1028.
[28] Zhang S, Sheng X, Yang S, et al. Improving the double-exponential windowing method to identify modal frequencies and damping ratios of dynamically large structures[J]. Journal of Sound and Vibration, 2020, 476:115314.

PDF(2909 KB)

Accesses

Citation

Detail

段落导航
相关文章

/