厚度分布形式对变厚度薄板振动特性影响规律研究

徐峰祥1,2,董壮1,2,苏建军3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (6) : 289-297.

PDF(2368 KB)
PDF(2368 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (6) : 289-297.
论文

厚度分布形式对变厚度薄板振动特性影响规律研究

  • 徐峰祥1,2,董壮1,2,苏建军3
作者信息 +

Influence of thickness distribution on the vibration characteristics of thin plates with variable thickness

  • XU Fengxiang1, 2, DONG Zhuang1, 2, SU Jianjun3
Author information +
文章历史 +

摘要

以变厚度薄板理论模型及振动特性求解方法为研究基础,对不同类型变厚度薄板的振动特性进行仿真分析,总结其随厚度改变的变化规律,并在此发现上,提出一种新型变厚度薄板。通过对线性和非线性变厚度薄板的建模仿真,验证了变厚度薄板建模过程和仿真结果的准确性;基于同种建模方法,赋予薄板不同的厚度变化规律,包括单向线性、单向非线性、双向线性和双向非线性变厚度薄板四种,研究其在经典边界条件下与对应的等质量等厚度薄板之间的振动特性差异及自身随厚度变化参数改变的变化规律;最后,提出一种新型变厚度薄板,发现并验证其较前面四种变厚度薄板在经典边界条件下更能有效提升薄板低阶固有频率,并将研究范围扩充至任意弹性边界条件。

Abstract

Based on the theoretical model of the variable-thickness thin plate and the method of solving vibration characteristics, the vibration characteristics of different types of variable-thickness thin plates are simulated and analyzed, and the change rule with the thickness change is summarized. Through the modeling and simulation of linear and non-linear variable thickness thin plates, the accuracy of the variable thickness thin plate modeling process and simulation results is verified; based on the same modeling method, the thin plate is given different thickness variation rules, including unidirectional linear, single There are four kinds of nonlinear thickness, bidirectional linear and bidirectional nonlinear variable thickness thin plates. The vibration characteristics of the thin plates with equal thickness and equal thickness under the classic boundary conditions and their own changes with the thickness change parameters are changed. Finally, A new type of variable-thickness thin plate is proposed, and it is found and verified that it can effectively improve the low-order natural frequency of the thin plate under the classical boundary conditions compared to the previous four variable-thickness thin plates.

关键词

变厚度薄板 / 振动特性 / 新型厚度分布 / 弹性边界

Key words

thin plate with variable thickness / vibration characteristics / new thickness distribution / elastic boundary

引用本文

导出引用
徐峰祥1,2,董壮1,2,苏建军3. 厚度分布形式对变厚度薄板振动特性影响规律研究[J]. 振动与冲击, 2022, 41(6): 289-297
XU Fengxiang1, 2, DONG Zhuang1, 2, SU Jianjun3. Influence of thickness distribution on the vibration characteristics of thin plates with variable thickness[J]. Journal of Vibration and Shock, 2022, 41(6): 289-297

参考文献

[1]Silva A R, Silveira R A, Gonçalves P B. Numerical methods for analysis of plates on tensionless elastic foundations[J]. International Journal of Solids and Structures, 2001, 38(10-13): 2083-2100.
[2]Civalek Ö. Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation[J]. Journal of Sound and Vibration, 2006, 294(4-5): 966-980.
[3]Bert C, Malik M. Free vibration analysis of tapered rectangular plates by differential quadrature method: a semi-analytical approach[J]. Journal of Sound and Vibration, 1996, 190(1): 41-63.
[4]Malekzadeh P, Shahpari S. Free vibration analysis of variable thickness thin and moderately thick plates with elastically restrained edges by DQM[J]. Thin-walled structures, 2005, 43(7): 1037-1050.
[5]苏淑兰, 饶秋华, 王银邦. 单向变厚度Levy型薄板的自由振动分析[J]. 中南大学学报(自然科学版), 2011, 42(05): 1413-1418.
SU Shu-lan, RAO Qiu-hua, WANG Yin-bang. Free vibration of Levy-plate with uni-directionally varying thickness. Journal of Central South University (Natural science), 2011, 42(05): 1413-1418.
[6]Shufrin I, Eisenberger M. Vibration of shear deformable plates with variable thickness—first-order and higher-order analyses[J]. Journal of sound and vibration, 2006, 290(1-2): 465-489.
[7]薛开, 王久法, 王威远, et al. 变厚度薄板在任意弹性边界条件下的自由振动分析[J]. 振动与冲击, 2013, 32(21): 131-135.
XUE Kai,WANG Jiu-fa,WANG Wei-yuan,LI Qiu-hong,WANG Ping. Free vibration analysis of tapered plates with arbitrary elastic boundary condition. JOURNAL OF VIBRATION AND SHOCK. , 2013, 32(21): 131-135.
[8]薛开, 王久法, 李秋红, et al. 双向变厚度矩形薄板的自由振动分析[J]. 哈尔滨工程大学学报, 2013, 34(11): 1456-1459.
XUE Kai,WANG Jiufa,LI Qiuhong,WANG Weiyuan,WANG Ping. Free vibration analysis of rectangular plateswith varying thickness in two directions. Journal of Harbin Engineering University, 2013, 34(11): 1456-1459.
[9]Li W L. Free vibrations of beams with general boundary conditions[J]. Journal of Sound and Vibration, 2000, 237(4): 709-725.
[10]Li W L. Vibration analysis of rectangular plates with general elastic boundary supports[J]. Journal of Sound and Vibration, 2004, 273(3): 619-635.
[11]Li W, Zhang X, Du J, et al. An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports[J]. Journal of Sound and Vibration, 2009, 321(1-2): 254-269.
[12]Sakiyama T, Huang M. Free vibration analysis of rectangular plates with variable thickness[J]. Journal of Sound and Vibration, 1998, 216(3): 379-397.
[13]Singh B, Saxena V. Transverse vibration of a rectangular plate with bidirectional thickness variation[J]. Journal of Sound and Vibration, 1996, 198(1): 51-65.
[14]Ashour A. Vibration of variable thickness plates with edges elastically restrained against translation and rotation[J]. Thin-walled structures, 2004, 42(1): 1-24.

PDF(2368 KB)

596

Accesses

0

Citation

Detail

段落导航
相关文章

/