钢框架中可更换橡胶抗弯耗能阻尼器减震性能分析

舒展1, 董翰林2,石文龙1,GREGORY MacRae3,宁波1,甘兆焯2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (7) : 159-166.

PDF(3385 KB)
PDF(3385 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (7) : 159-166.
论文

钢框架中可更换橡胶抗弯耗能阻尼器减震性能分析

  • 舒展1, 董翰林2,石文龙1,GREGORY MacRae3,宁波1,甘兆焯2
作者信息 +

Aseismic performance of replaceable moment-resisting elastomeric dampers for steel frames

  • SHU Zhan1, DONG Hanlin2, SHI Wenlong1, GREGORY MacRae3, NING Bo1, GAN Zhaozhuo2
Author information +
文章历史 +

摘要

本文为钢框架结构提出一种可更换橡胶抗弯阻尼器,装配于钢梁的端部,不额外占用建筑空间。阻尼器包括橡胶段与保险丝段两部分,可在地震过程中提供分段自适应的被动耗能。本文首先阐明了此类阻尼器的作用机理,并对其提供了简要的抗震设计方法。并介绍了橡胶材料及橡胶段的动力试验。随后,本文对一典型钢框架结构进行算例分析,比较使用与未使用阻尼器两种情况下结构的地震响应。计算结果表明,橡胶抗弯可更换耗能阻尼器可为钢框架结构提供有效系统阻尼,通过将耗能与破坏聚集于阻尼器的不同部位,使结构中其他构件基本维持在弹性阶段,从而有效降低或消除结构残余位移;同时,阻尼器中的保险丝段为可更换构件,可显著提高整体结构的抗震性能与震后可恢复性能。

Abstract

An innovative type of replaceable moment-resisting elastomeric damper (RMED) is proposed for the steel moment frame systems. The proposed dampers are installed at the two ends of the steel beams, occupying no additional architectural space. A typical RMED consists of a elastomeric segment and a fuse segment, which could provide adaptive passive energy dissipating capacity to the structure. The paper first illustrates the mechanism and the seismic design principle for the RMEDs. Then, the dynamic tests to evaluate the performance of the rubber material and the elastomeric segment of the damper were highlighted. Subsequently, the paper provides a case study based on a prototype steel moment frame structure. The earthquake responses of the structure with and without RMEDs are carefully simulated and compared. The results show that the RMEDs provide the steel moment frames with effective damping. The energy dissipation and the damages of the whole building are all gathered at the RMED. This secures the elastic performance of all the other structural elements during the earthquake events, so that the residual displacement of the structure can be effectively reduced or eliminated.. Furthermore, the fuse segment of the damper is a replaceable component, which can significantly improve the seismic performance and post-earthquake recovery performance of the whole structure.

关键词

震后可恢复功能结构 / 钢框架结构 / 黏弹性阻尼器 / 可更换部件 / 结构保险丝

Key words

earthquake resilient structure / steel moment frame / elastomeric dampers / replaceable links / structural fuse

引用本文

导出引用
舒展1, 董翰林2,石文龙1,GREGORY MacRae3,宁波1,甘兆焯2. 钢框架中可更换橡胶抗弯耗能阻尼器减震性能分析[J]. 振动与冲击, 2022, 41(7): 159-166
SHU Zhan1, DONG Hanlin2, SHI Wenlong1, GREGORY MacRae3, NING Bo1, GAN Zhaozhuo2. Aseismic performance of replaceable moment-resisting elastomeric dampers for steel frames[J]. Journal of Vibration and Shock, 2022, 41(7): 159-166

参考文献

[1] National Research Council. National earthquake resilience: research, implementation, and outreach[R]. Washington DC: The National Academies Press, 2011, 19-34.
[2] 郭彦林,周明,董全利, 等. 三类钢板剪力墙结构实验研究[J]. 建筑结构学报, 2011, 32(1): 17-29.
GUO Yan-lin,ZHOU Ming, DONG Jin-li, et al. Experimental study on three types of steel plate shear walls under cyclic loading [J]. Journal of Building Structures, 2011, 32(1): 17-29.
[3] Pekcan G, Linke C,Itani A.  Damage avoidance design of special truss moment frames with energy dissipating devices[J]. Journal of Constructional Steel Research, 2009, 65(6): 1374-1384.
[4] Oh S H, Kim Y J, Ryu H S.  Seismic performance of steel structures with slit dampers[J].  Engineering Structures, 2009, 31(9): 1997-2008.
[5] Benavent-Climent A,  Morillas L,  Vico J M A .  Study on using wide-flange section web under out-of-plane flexure for passive energy dissipation[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(5): 473-490.
[6] 童根树,季渊. 多高层框架-弯剪型支撑结构的稳定性研究[J]. 土木工程学报, 2005, 38(5): 28-33.
TONG Gen-shu, JI Yuan. Stability of multistory frames braced by Timoshenko vertical cantilevers [J]. China Civil Engineering Journal, 2005, 38(5): 28-33.
[7] 吕西林,陈云,蒋欢军. 新型可更换连梁研究进展[J]. 地震工程与工程振动, 2013, 33(1): 8-15.
LV Xi-lin, CHEN Yun, JIANG Huan-jun. Research progress in new replaceable coupling beams [J]. Earthquake Engineering and Engineering Vibration, 2013, 33(1): 8-15.
[8] 师骁,王彦栋,曲哲,等. 含摩擦阻尼器钢连梁的往复加载实验[J]. 工程力学, 2016, 33(S1): 156-160.
SHI Xiao, WNAG Yan-dong, Qu Zhe, et al. Cyclic loading teat on steel coupling beam with friction damper [J]. Engineering Mechanics, 2016, 33(S1): 156-160.
[9] 纪晓东,马琦峰,王彦栋,等. 钢连梁可更换消能梁段抗震性能实验研究[J]. 建筑结构学报, 2014, 35(6): 1-11.
JI Xiao-dong, MA Qi-feng, WANG Yan-dong, et al. Cyclic tests of replaceable shear links in steel coupling beams [J]. Journal of Building Structures, 2014, 35(6): 1-11.
[10] 邓付元,王涛,施唯. 带阻尼器消能连梁抗震性能试验研究[J]. 土木工程学报, 2016, (S1):101-105+118.
DENG Fu-yuan, WNAG Tao, SHI Wei. Cyclic teat on seismic behavior of energy-dissipative coupling beams with dampers [J]. China Civil Engineering Journal, 2014, 35(6): 1-11.
[11] Baiguera M, Vasdravellis G, Karavasilis T. L. Dual seismic-resistant steel frame with high post-yield stiffness energy-dissipative braces for residual drift reduction[J]. Journal of Constructional Steel Research, 2016, 122:198-212.
[12] Castiglioni  C A, Kanyilmaz A, Calado L. Experimental analysis of seismic resistant composite steel frames with dissipative devices [J].  Journal of Constructional Steel Research, 2012, 76: 1-12.
[13] Dougka G, Dimakogianni D, Vayas I. Innovative energy dissipation systems (FUSEIS 1-1) - Experimental analysis[J]. Journal of Constructional Steel Research, 2014, 96(5): 69-80.
[14] 霍伟廉,毛增达,张学俭,等. 设置黏弹性阻尼器钢结构高层建筑抗震抗风设计的实用方法[J]. 建筑结构学报, 1998, 19(3): 42-49.
HUO Wei-lian, MAO Zeng-da, ZHANG Xue-jian, et al. A practical method for seismic and wind resistance design of steel structure high-rise buildings with viscoelastic dampers [J]. Journal of Building Structures, 1998, 19(3): 42-49.
[15] 李宏男,倪培华,付兴. 剪切型转动黏弹性阻尼器在村镇木结构抗风中的应用[J]. 建筑科学与工程学报, 2016, 33(6): 24-29.
LI Hong-nan, LI Pei-hua, FU Xing. Application of shear-rotation viscoelastic damper in wind resistance of rural wood structures. [J]. Journal of Architecture and Civil Engineering, 2016, 33(6): 24-29.
[16] 范峰, 沈世钊. 网壳结构的粘弹阻尼器减振分析[J]. 地震工程与工程振动, 2003, 23(3): 156-159.
FAN Feng, SHEN Shi-zhao. Vibration reducing analysis of single layer reticulated shells with viscous-elastic dampers [J]. Earthquake Engineering and Engineering Vibration, 2003, 23(3): 156-159.
[17] 王艮平,张超,邓雪松,等. 扇形铅黏弹性阻尼器加固RC框架的抗震性能试验研究[J]. 土木工程学报, 2016 (10), 41-48.
WNAG Gen-ping, ZHANG Chao, DENG Xue-song, et al. Experimental study on seismic performance of RC frame retrofitted with sector lead viscoelastic dampers [J]. China Civil Engineering Journal, 2016(10): 41-48.
[18] Christopoulos C, Montgomery M. Viscoelastic coupling damper (VCD) for enhanced dynamic performance of high-rise buildings[J]. Earthquake Engineering & Structure Dynamics, 2013, 12(15): 2217-2233.
[19] 陈以一,贺修樟,柯珂,等. 可更换损伤元结构的特征与关键技术[J]. 建筑结构学报, 2016, 37(2): 1-10.
CHEN Yi-yi, HE Xiu-zhang, KE Ke, et al. Characteristics and technical issues on structural systems with replaceable damage-concentrated elements [J]. Journal of Building Structures, 2016, 37(2): 1-10.
[20] Zhou Y, Chen P, Gong S. Mechanical model of a hybrid nonlinear viscoelastic material damping device with its verifications[J]. Frontier in Materials. 2019;6(33):1-13.
[21] Christopoulos C, Montgomery M. Viscoelastic coupling damper (VCD) for enhanced dynamic performance of high-rise buildings[J]. Earthquake Engineering & Structural Dynamics. 12(15): 2217-2233.
[22] Shu Z, Ning B, Li S, Li Z, Gan Z Z, Xie Y Z. Experimental and numerical investigations of replaceable moment-resisting viscoelastic damper for steel frames[J]. Journal of Constructional Steel Research, 2020;170:106100.
[23] Makris N, Constantinou M C. Fractional-derivative Maxwell model for viscous dampers[J]. ASCE J Struct Eng, 1991;117(9):2708-24.
[24] Balut N, Gioncu V. Suggestion for an improved “dog-bone” solution[C]. Proceeding Stessa, Balkema, Lisse, Netherlands: 129-134.
[25] Valente M, Castiglioni C A, Kanyilmaz A. Dissipative devices for earthquake resistant composite steel structures: bolted versus welded solution[J]. Bulletin of Earthquake Engineering, 2016, 1-27.
[26] Shen Y L, Christopoulos C, Mansour N, et al. Seismic design and performance of steel moment-resisting frames with nonlinear replaceable links [J]. Journal of Structural Engineering, 2011, 137(10): 1107-1117.
[27] Ji X, Wang Y, Ma Q, et al. Cyclic Behavior of Very Short Steel Shear Links [J]. Journal of Structural Engineering, 2016, 142(2): 04015114.
[28] Yu Y, Tsai K, Weng Y, Lin B, Lin J. Analytical studies of a full-scale steel building shaken to collapse[J]. Engineering Structures, 2010, 32(10):3418-3430.
[29] Dao ND, Ryan, KL. Computational simulation of a full-Scale, fixed-Base, and isolated-base steel moment frame building tested at E-Defense[J]. Journal of Structural Engineering, ASCE, 2014, 140, SPECIAL ISSUE: Computational simulation in structural engineering, A4014005.
[30] Kasai K, Hikino, T, Ito H, Ooki Y, Motoyui S, Kato F, Baba Y. Overall test outline and response of building without dampers. 3D shake table tests on full scale 5-story steel building with dampers Part 1[J]. Journal of Structural & Construction Engineering, AIJ, 2011, 76(663):997-1006 (in Japanese).
[31] Zhang J, Shu Z. Optimal design of isolation devices for mid-rise steel moment frames using performance based methodology[J]. Bulletin of Earthquake Engineering, 2018, 16:4315-4338.

PDF(3385 KB)

Accesses

Citation

Detail

段落导航
相关文章

/