基于BRB的铁路双柱式超高墩连续梁桥横向减震研究

漆启明1,邵长江1,黄辉1,王应良2,戴晓春3,韦旺1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (7) : 182-192.

PDF(6931 KB)
PDF(6931 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (7) : 182-192.
论文

基于BRB的铁路双柱式超高墩连续梁桥横向减震研究

  • 漆启明1,邵长江1,黄辉1,王应良2,戴晓春3,韦旺1
作者信息 +

Transverse seismic mitigation of railway continuous girder bridge with double-column ultra-high piers based on BRBs

  • QI Qiming1, SHAO Changjiang1, HUANG Hui1, WANG Yingliang2, DAI Xiaochun3, WEI Wang1
Author information +
文章历史 +

摘要

为提升双柱式超高墩桥梁的横向抗震性能,可将屈曲约束支撑(BRB)用于双肢墩身。通过某铁路超高墩大跨连续钢桁梁桥非线性时程分析,研究了罕遇(PGA=0.227g)和极罕遇(PGA=0.640g)地震下BRB的参数影响规律、作用机理及减震效果,探讨了高阶振型对BRB墩身地震响应的影响。结果表明:BRB能够改变墩身传力路径,在一定参数范围内可将原有墩身部分弯矩转化为支撑点的轴力和剪力;罕遇地震下BRB未充分发挥耗能作用,地震响应随芯材面积Ae增加而不断接近X撑方案;极罕遇地震下设置BRB可明显减小墩顶位移和墩身轴力响应;BRB会适当增加墩身弯矩响应,但截面PM滞回并未超过等效屈服包络;由于高阶振型效应,BRB墩身中部的剪力、弯矩响应包络图凹凸交替变化;随着墩高的降低,高阶振型的影响减弱,墩身剪力、弯矩包络图近似双折线;采用BRB可有效抑制超高墩的高阶振型,同时提升极罕遇地震下桥墩的耗能能力、增强横桥向抗震性能。

Abstract

To improve the transverse seismic performance of bridges with double-column ultra-high piers, the buckling -restrained braces (BRB) are used as the lateral connections of double columns. Taking a railway long-span continuous steel truss bridge as an example, nonlinear time history analysis was performed under rare (PGA=0.227g) and ultra-rare (PGA=0.640g) earthquakes. The law of design parameters, together with mechanism and seismic mitigation effects of BRB were investigated. The influence of higher order modes on seismic responses of piers with BRB was discussed. The results show that the force transmission path of pier is changed by BRB, and the former bending moment of the columns is partially transformed shear and axial forces within a certain extent at the support nodes. The energy dissipation role of BRB is not full activated under the rare earthquakes, and the seismic response tends to the X-brace model with the increase of core area Ae. When subjected to ultra-rare earthquake, the tip displacement and axial force are obviously reduced. Though the bending moment response would be increased in some degree, the PM interaction hysteresis does not exceeds the envelop curves of the equivalent yield state. Due to the higher order mode effects, the response of shear and moment in the middle of pier with BRB is alternately concave convex. The influence of higher order mode weakens with the decrease of height, and the shear and the moment envelopes approximate to be a bilinear. The higher order mode of ultra-high piers can be effectively suppressed by BRB. Meanwhile, the energy dissipation capacity of pier can be improved and the transverse seismic performance can be enhanced under ultra-rare earthquakes.

关键词

关键词:连续梁桥 / 双柱式超高墩 / 屈曲约束支撑(BRB) / 高阶振型 / 减震性能

Key words

continuous bridge / ultra-high double-column pier / buckling restrained brace (BRB) / higher order mode / seismic mitigation performance

引用本文

导出引用
漆启明1,邵长江1,黄辉1,王应良2,戴晓春3,韦旺1. 基于BRB的铁路双柱式超高墩连续梁桥横向减震研究[J]. 振动与冲击, 2022, 41(7): 182-192
QI Qiming1, SHAO Changjiang1, HUANG Hui1, WANG Yingliang2, DAI Xiaochun3, WEI Wang1. Transverse seismic mitigation of railway continuous girder bridge with double-column ultra-high piers based on BRBs[J]. Journal of Vibration and Shock, 2022, 41(7): 182-192

参考文献

[1] 民用建筑设计统一标准: GB 50352-2019 [S]. 北京:中国建筑工业出版社, 2019.
[2] USAMI T, LU Z, GE H. A seismic upgrading method for steel arch bridges using buckling-restrained braces [J]. Earthquake Engineering & Structural Dynamics, 2005, 34: 471-496.
[3] CHEN Z, GE H, KASAI A, et al. Simplified seismic design approach for steel portal frame piers with hysteretic dampers [J]. Earthquake Engineering and Structural Dynamics,2007,36:541-562.
[4] EL-BAHEY S, BRUNEAU M. Buckling restrained braces as structural fuses for the seismic retrofit of reinforced concrete bridge bents [J]. Engineering Structures, 2011, 33:1052-1061.
[5] 谢文,孙利民. 采用附加耗能构件的双柱式高墩地震损伤控制研究[J]. 振动与冲击,2015,34(20):98-103+114.
XIE Wen, SUN Limin. Seismic damage control for twin-column tall piers by using supplemental energy dissipation elements [J]. Journal of Vibration and Shock, 2015, 34(20): 98-103+114.
[6] WANG Y, IBARRA L, PANTELIDES C. Seismic retrofit of a three-span RC bridge with buckling-restrained braces [J]. Journal of Bridge Engineering, 2016, 21(11):04016073(1-12).
[7] WEI X, BRUNEAU M. Case study on applications of structural fuses in bridge bents [J]. Journal of Bridge Engineering, 2016, 21(7):05016004(1-15).
[8] BAZAEZ R, DUSICKA P. Cyclic behavior of reinforced concrete bridge bent retrofitted with buckling restrained braces [J]. Engineering Structures, 2016, 119:34-48.
[9] 李晓莉,孙治国,刘昕,等. 山区桥梁双柱式桥墩设置BRB的减震效果研究[J]. 振动与冲击,2018,37(22):173-180.
LI Xiaoli, SUN Zhiguo, LIU Xin, et al. Seismic responses of double column bridge bents with buckling-restrained braces in mountain areas [J]. Journal of Vibration and Shock, 2018, 37(22):173-180.
[10] 孙治国,华承俊,石岩,等. 利用BRB实现桥梁排架基于保险丝理念的抗震设计[J]. 振动与冲击,2015,34(22):199-205.
SUN Zhiguo, HUA Chengjun, SHI Yan, et al. Seismic design of bridge bents with BRB as a structural fuse [J]. Journal of Vibration and Shock, 2015, 34(22):199-205.
[11] 张永亮,董阳,张磊,等. BRB在双柱式桥墩抗震体系中的工作机理分析[J]. 地震工程学报,2018,40(5):957-962.
ZHANG Yongliang, DONG Yang, ZHANG Lei, et al. Working mechanism of buckling-restrained braces in the seismic system of double-column bridge piers [J]. China Earthquake Engineering Journal, 2018, 40(5):957-962.
[12] XIANG NL, ALAM MS. Displacement-based seismic design of bridge bents retrofitted with various bracing devices and their seismic fragility assessment under near-fault and far-field ground motions [J]. Soil Dynamics and Earthquake Engineering, 2019, 119:75-90.
[13] 刘子舟,王东升,陈磊,等. 近断层地震动下设置BRB的双向减隔震桥梁地震反应[J]. 世界地震工程,2020,36(2):155-162.
LIU Zizhou, WANG Dongsheng, CHEN Lei, et al. Seismic response of bidirectional isolation bridges using BRBs under near-fault ground motions [J]. World Earthquake Engineering, 2020, 36(2):155-162.
[14] CHEN X, LI CX. Seismic assessment of tall pier bridges with double-column bents retrofitted with buckling restrained braces subjected to near-fault motions [J]. Engineering Structures, 2021, 226:111390(1-11).
[15] 李勇,刘晶波,李朝红. 基于耗能系梁的双肢高墩刚构桥减震控制研究[J]. 振动与冲击,2018,37(15):130-135.
LI Yong, LIU Jingbo, LI Zhaohong, et al. Aseismic control of a rigid frame bridge with double-limb high piers based on energy dissipation tie-beams [J]. Journal of Vibration and Shock, 2015, 37(15):130-135.
[16] 卢皓,管仲国,李建中. 高阶振型对高墩桥梁抗震性能的影响及其识别[J]. 振动与冲击,2012,31(17):81-85+98.
LU Hao, GUAN Zhongguo, LI Jianzhong. Effects of higher modal shapes on aseismic performance of a bridge with high piers and its identification [J]. Journal of Vibration and Shock, 2017, 31(17): 81-85+98.
[17] 陈旭,李建中,刘笑显. 墩身高阶振型对高墩地震反应影响[J]. 同济大学学报(自然科学版),2017,45(2):159-166.
CHEN Xu, LI Jianzhong, LIU Xianxiao. Seismic performance of tall piers influenced by higher-mode effects of piers [J]. Journal of Tongji University (Natural Science), 2020, 39(6):225-229+242.
[18] 张永亮,冯鹏飞,陈兴冲,等. 高阶振型对大跨度钢桁拱桥地震反应的影响[J]. 振动与冲击,2020,39(6):225-229 +242.
ZHANG Yong-liang, FENG Pengfei, CHEN Xingchong, et al. Influence of high-order modes on the seismic response of a long-span steel truss arch bridge [J]. Journal of Vibration and Shock, 2020, 39(6):225-229+242.
[19] 铁路桥涵地基和基础设计规范: TB 10093-2017 [S]. 北京: 中国铁道出版社,2017.
[20] 铁路工程抗震设计规范: GB50111-2006(2009) [S]. 北京: 中国计划出版社,2009.
[21] 公路桥梁抗震设计规范: JTG/T 2231-01-2020 [S]. 北京: 人民交通出版社,2020.
[22] SINGH MP, VERMA N P, MORESCHI LM. Seismic analysis and design with Maxwell dampers [J]. Journal of Engineering Mechanics, 2003, 129(3):273-282.
[23] TJ屈曲约束支撑应用技术规程: DBJ/CT 105-2011 [S]. 上海:上海市建筑建材业市场管理总站,2011.
[24] 邵长江,漆启明,韦旺,等. 铁路圆端空心高墩振动台模型试验研究[J]. 土木工程学报,2020,53(2):72-80.
Shao Changjiang, Qi Qiming, Wei Wang, et al. Shaking table test on the specimens of railway round-ended hollow tall piers [J]. China Civil Engineering Journal, 2020, 53(2):72-80.

PDF(6931 KB)

Accesses

Citation

Detail

段落导航
相关文章

/