动力固结时频繁的大载荷卸载是起重机结构损伤、故障率高的主要原因。针对动力固结冲击大、设备寿命低的问题,探讨了起重机卸载冲击机理,提出了通过卸载器耗能降低卸载冲击的新方法。研究了起重机-重锤模型中系统能量转移规律,提出了柔性卸载原理,建立了描述柔性卸载关键参数的数学模型。根据多体动力学基本理论,建立了起重机的刚柔耦合模型,仿真预测了卸载时间与冲击响应之间的关系,验证了柔性卸载理论模型。根据柔性卸载理论,在起重机与重锤之间设计了基于力控的柔性卸载器,将悬吊拉力控制转变为液压力控制。通过突然卸载与柔性卸载的对比试验,证明柔性卸载显著延长了卸载时间,柔性卸载装置可行,为一类冲击机械减振设计提供了参考。
Abstract
Frequent large load unloading impact during dynamic consolidation is the main reason for crane structure damage and high failure rate. Aiming at the problems of large dynamic consolidation impact and low equipment life, the mechanism of crane unloading impact is discussed, and a new method for reducing unloading impact through the energy consumption of the unloader is proposed. The law of system energy transfer in the crane-weight hammer model is studied, the principle of flexible unloading is proposed, and a mathematical model describing the key parameters of flexible unloading is established. According to the basic theory of multi-body dynamics, a rigid-flexible coupling model of the crane is established, and the relationship between unloading time and impact response is predicted by simulation, which validates the theoretical model of flexible unloading. According to the theory of flexible unloading, a force-control-based flexible unloader is designed between the crane and the heavy hammer, and the suspension tension control is transformed into hydraulic pressure control. The test proves that flexible unloading significantly extends the unloading time, which provides a reference for the design of a class of impact machinery.
关键词
动力固结 /
柔性卸载 /
刚柔耦合 /
数学模型 /
力控机构
{{custom_keyword}} /
Key words
Dynamic compaction /
Flexible unloading /
Rigid-flexible-model /
Mathematical model /
Force control device
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Ruiyu Zhang, Yujin Sun, Erxiang Song. Simulation of dynamic compaction and analysis of its efficiency with the material point method[J].Computers and Geotechnics, 2019, 116:1-19.
[2] L Menard, Y Broise. Theoretical and practical aspects of dynamic consolidation[J].Geotechnique, 1975, 25(1):3-18.
[3] 刘洋, 李宇力, 等. 基于缓冲力设计的变阻尼防后倾装置特性研究[J].中国工程机械学报, 2013, 11(1):83-87.
LIU Yang, LI Yuli, et al. Study of variable damping hydraulic buffer for crane boom anti-backward-tipping based on buffer force design[J].Chinese Journal of Construction Machine, 2013, 11(1):83-87.
[4] 付玲, 喻乐康, 刘洋, 等. 细长型桁架起重臂卸载冲击动力学研究[J].起重运输机械, 2013, 1:56-60.
FU Ling, YU Lekang, LIU Yang. Study of unloading impact dynamics on slender truss crane with luffing boom[J].Lifting the transport machinery, 2013, 1:56-60.
[5] 李伟,杨晨,王桂录,等.基于瞬态动力学强夯机臂架折弯事故分析[J].中国工程机械学报,2020,2:184-188.
LI Wei, YANG Chen, WANG Guilu, et al. Based on transient analysis of an accident of arm structure[J]. Chinese Journal of Construction Machinery, 2020,2:184-188.
[6] 李肖彬.强夯机转台强度和疲劳寿命研究[D].吉林大学,2017.
LI Xiaobin. Research on the fatigue life and strength of slewing platform in dynamic compaction machinery[D].Jilin University,2017.
[7] 周波,周君,朱发浩. 履带式强夯机结构晃动机理及影响参数分析[J].起重运输机械,2013,8:82-86.
ZHOU Bo, ZHOU Jun, ZHU Fahao. Analysis of structure shaking mechanism and influencing parameters of crawler dynamic compaction machine[J]. Lifting the transport machinery, 2013, 8:82-86.
[8] 高顺德, 谢高兰, 等.基于刚柔耦合模型的强夯机动力学分析[J].中国工程机械学报, 2011, 9(3):284-289.
GAO Shunde, XIE Gaolan, et al. Dynamical analysis on compactor based on rigid-flexible-coupling model[J].Chinese Journal of Construction Machine, 2011, 9(3):284-289.
[9] 谢高兰.基于虚拟样机技术的强夯机动态性能研究[D].大连理工大学,2011.
XIE Gaolan. Research on dynamic characteristic of compactor based on virtual prototype technology[D]. Dalian University of Technology,2011.
[10] 丁问司,迟永斌.柔性液压冲击系统[J].机械工程学报, 2006,42(4):161-167.
DING Wensi, CHI Yongbin. Flexible hydraulic impactor[J]. Chinese journal of mechanical engineering, 2006,42(4):161-167.
[11] 王逢全.基于虚拟样机技术的液压脱钩器仿真及优化[D]. 大连理工大学,2006.
WANG Fengquan. Simulation and optimization of hydraulic self-release mechanism based on virtual prototyping[D]. Dalian University of Technology,2006.
[12] 叶浪.气液驱动连续强夯机构仿真研究[D].大连理工大学,2013.
YE Lang. The simulation and research on hydro-pneumatic driving uninterrupted compactor mechanism[D].Dalian University of Technology,2013.
[13] OUYANG Q, ZHENG J, LI Z, et al. Controllability analysis and testing of a novel magnetorheological absorber for field gun recoil mitigation [J]. Smart Materials and Structures, 2016, 25(11): 115041.
[14] A A Gharapurkar. Robust semi-active control of aircraft landing gear system equipped with
magnetorheological dampers[D]. Montreal: Concordia University, 2014.
[15] FU B, LIAO C, LI Z, et al. Impact behavior of a high viscosity magnetorheological fluid-based energy absorber with a radial flow mode[J]. Smart Materials and Structures, 2017, 26(2):025025.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}