基于细观模拟的碾压混凝土尺寸效应律研究

魏培勇1,2,张社荣1,2,王超1,2,王枭华 1,2,和孙文3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (7) : 250-257.

PDF(2445 KB)
PDF(2445 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (7) : 250-257.
论文

基于细观模拟的碾压混凝土尺寸效应律研究

  • 魏培勇1,2,张社荣1,2,王超1,2,王枭华 1,2,和孙文3
作者信息 +

Size effect law of RCC based on mesoscopic simulation

  • WEI Peiyong1,2, ZHANG Sherong1,2, WANG Chao1,2, WANG Xiaohua1,2, HE Sunwen3
Author information +
文章历史 +

摘要

关于混凝土类材料准静态尺寸效应研究已经相对完善,然而受实验设备及条件限制较高应变率下混凝土材料的尺寸效应行为仍需进一步研究。同时作为组分特殊的一种混凝土材料,碾压混凝土动态尺寸效应研究对碾压混凝土坝抗冲击防护研究具有重要意义。将混凝土视为粗骨料、砂浆基质、界面过渡层组成的三相复合材料,建立了不同尺寸碾压混凝土圆柱形试件,对不同应变率下碾压混凝土压缩特性进行了模拟与分析。研究结果表明:与常态混凝土类似,动态荷载("ε"  ̇">30/s" )下碾压混凝土尺寸效应行为与静态荷载下相反,即动态抗压强度随试件尺寸增长而增强;动态尺寸效应与应变率呈现相关性,应变率越高,动态尺寸效应越显著,这与碾压混凝土SHPB(the Split Hopkinson Pressure Bar)试验结果相验证;当应变率"ε"  ̇"=1~30/s" 时,尺寸效应并不显著,不同尺寸试件的抗压强度相差不大;准静态荷载"ε"  ̇"=1E-5/s" 下,碾压混凝土抗压强度随尺寸增加而降低。最后,基于Bazant尺寸效应对碾压混凝土尺寸效应律进行了量化分析。

Abstract

The research on quasi-static size effect of concrete materials has been relatively comprehensive. However, the size effect behavior of concrete materials under high strain rates needs further investigation, mainly due to the limitations of experimental equipment and conditions. Meanwhile, as a kind of concrete material with special components, the understanding of the dynamic size effect of roller compacted concrete is essential to better study of impact protection of roller compacted concrete dams. In this paper, concrete was regarded as a three-phase composite composed of coarse aggregate, mortar matrix and interface transition zone. Then roller compacted concrete cylindrical specimens with different sizes were established to simulate and analyze the compressive characteristics of RCC under different strain rates. The results show that, like the normal concrete, the size effect behavior of RCC under dynamic loads ("ε"  ̇">30/s" ) is opposite to that under static loads. That is to say, the dynamic compressive strength increases with the increase of specimen size. The higher the strain rate is, the more significant the dynamic size effect is, which is verified by the SHPB test results of RCC. When the strain rate "ε"  ̇"=1~30/s" , the size effect is not significant, and the compressive strength of different size specimens has little difference. Under quasi-static load ("ε"  ̇"=1E-5/s" ), the compressive strength of RCC decreases with the increase of specimen size.

关键词

碾压混凝土 / 尺寸效应 / 细观数值模拟 / 抗压强度

Key words

roller compacted concrete / size effect / mesoscopic numerical simulation / compressive strength

引用本文

导出引用
魏培勇1,2,张社荣1,2,王超1,2,王枭华 1,2,和孙文3. 基于细观模拟的碾压混凝土尺寸效应律研究[J]. 振动与冲击, 2022, 41(7): 250-257
WEI Peiyong1,2, ZHANG Sherong1,2, WANG Chao1,2, WANG Xiaohua1,2, HE Sunwen3. Size effect law of RCC based on mesoscopic simulation[J]. Journal of Vibration and Shock, 2022, 41(7): 250-257

参考文献

[1]  WEIBULL W. A statistical theory of the strength of materials [J]. Proceedings of the Royal Swedish Institute Engineering Research, 1939, 151: 1-45.
[2]  BAANT Z P. Size Effect in Blunt Fracture: Concrete, Rock, Metal [J]. Journal of Engineering Mechanics, 1984, 110(4): 518-535.
[3]  CARPINTERI A. Fractal nature of material microstructure and size effects on apparent mechanical properties [J]. Mechanics of Materials, 1994, 18(2): 89-101.
[4]  HAO Y F, HAO H, et al. Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests [J]. Cement and Concrete Research, 2013, 52: 63-70.
[5]  HAO H, HAO Y F, LI J, et al. Review of the current practices in blast-resistant analysis and design of concrete structures[J]. Advances in Structural Engineering, 2016, 19(8): 1193-1223.
[6] 马怀发. 混凝土应变率效应产生机理探讨[J]. 水利学报, 2008, 39(Z2).
MA Huaifa. Discussion on the mechanism of concrete strain rate effect [J]. Journal of hydraulic engineering, 39(Z2).
[7]  KRAUTHAMMER T, ELFAHALl M M, LIM J, et al. Size effect for high strength concrete cylinders subjected to axial impact [J]. International Journal of Impact Engineering, 2003, 28(9): 1001-1006.
[8]  ELFAHAL M M, Krauthammer T, Ohno T, et al. Size effect for normal strength concrete cylinders subjected to axial impact [J]. International Journal of Jmpact Engineering, 2005, 31(4): 461-481.
[9] 胡伟华, 邹荣华, 彭刚, 等. 不同应变速率下混凝土吸能特性及尺寸效应的研究[J]. 长江科学院院报, 2015, 32(5): 132-136.
HU Weihua, ZOU Ronghua, PENG Gang, et al. Energy absorption characteristics and size effect of concrete under different strain rates [J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(5): 132-136.
[10] WANG X H, ZHANG S R, WANG C, et al. Experimental investigation of the size effect of layered roller compacted concrete (RCC) under high-strain-rate loading [J]. Construction and building materials, 2018, 165: 45-57.
[11] DOMAGALA L. Size effect in compressive strength tests of cored specimens of lightweight aggregate concrete [J]. Materials, 2020, 13(5): 1187.
[12] LEI W S, YU Z. A statistical approach to scaling size effect on strength of concrete incorporating spatial distribution of flaws [J]. Construction and Building Materials, 2016, 122: 702-713.
[13] VAN MIER J G M, VAN BLIET M R A. Influence of microstructure of concrete on size/scale effects in tensile fracture [J]. Engineering fracture mechanics, 2003, 70(16): 2281-2306.
[14] REDA TAHA M M, EI-DIEB A S, ABD EI-WAHAD M A, et al. Mechanical, fracture, and microstructural investigation of rubber concrete [J]. Journal of materials in civil engineering, 2008, 20(10): 640-649.
[15] WANG X, YANG Z, JIVKOV A P. Monte Carlo simulation of mesoscale fracture of concrete with random aggregates and pores: a size effect study [J]. Construction and Building Materials, 2015, 80: 262-272.
[16] JIN L, YU W X, DU X L, et al. Dynamic size effect of concrete under tension: A numerical study [J]. International Journal of Impact Engineering, 2019, 132: 103318.
[17] JIN L, YU W X, DU X L, et al. Mesoscopic numerical simulation of dynamic size effect on the splitting-tensile strength of concrete [J]. Engineering Fracture Mechanics, 2019, 209: 317-332.
[18] JIN L, YU W X, DU X L, et al. Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates [J]. International Journal of Impact Engineering, 2019, 125: 1-12.
[19] 金浏, 余文轩, 杜修力, 等. 低应变率下混凝土动态拉伸破坏尺寸效应细观模拟[J]. 工程力学, 2019, 36(08): 59-69+78.
JIN Liu, YU Wenxuan, DU Xiuli, et al. Meso-scale simulation of size effect on dynamic tensile strength of concrete under low strain rates [J]. Engineering mechanics, 2019, 36(08):56-69+78.
[20] 金浏, 余文轩, 杜修力, 等. 基于细观模拟的混凝土动态压缩强度尺寸效应研究[J]. 工程力学, 2019, 36(11): 50-61.
JIN Liu, YU Wenxuan, DU Xiuli, et al. Research on size effect of dynamic compressive strength of concrete based on meso-scale simulation [J]. Engineering mechanics, 2019, 36(11): 50-61.
[21] 吴银刚, 陈波, 杨君, 等. 冻融循环作用下碾压混凝土抗剪试验分析[J]. 水电能源科学, 2016, 34(12): 128-131.
WU Yingang, CHEN Bo, YANG Jun, et al. Shear test analysis of roller compacted concrete under freeze-thaw cycles [J]. Water resources and power, 2016, 34(12): 128-131.
[22] 戴宏斌, 刘茜, 严涛, 等. 通水冷却对碾压混凝土消力池温度应力的影响[J]. 水电能源科学, 2019, 37(10): 75-79.
DAI Hongbin, LIU Qian, YAN Tao, et al. Influence of water cooling on temperature stress of roller compacted concrete stilling pool [J]. Water resources and power, 2019, 37(10): 75-79.
[23] 吕小彬. 碾压砼抗冻性及层面抗渗性试验研究[D]. 北京:中国水利水电科学研究院, 1996.
LV Xiaobin. Experimental study on frost resistance and layer impermeability of roller compacted concrete [D]. Beijing: China institute of water resources and hydropower, 1996.
[24] 娄亚东. 碾压混凝土层面处理对层间结合性能影响研究[D]. 浙江:浙江大学, 2015.
LOU Yadong. Study on the effects of layer processing on the layer adhesion properties of RCC [D]. Zhejiang: Zhejiang university, 2015.
[25] ZHANG S R, SONG R, WANG C, et al. Experimental Investigation of the Compressive Behavior of RCC under High Strain Rates: Considering the Rolling Technique and Layered Structure [J]. Journal of materials in civil engineering, 2018, 30(4): 04018057.
[26] MA H F, XU W X, LI Y. Random aggregate model for mesoscopic structures and mechanical analysis of fully-graded concrete [J]. Computers & Structures, 2016, 177: 103-113.
[27] 马怀发, 陈厚群, 黎保琨. 混凝土试件细观结构的数值模拟[J]. 水利学报, 2004, (10): 27-35.
MA Huaifa, CHEN Houqun, LI Baokun. Meso-structure numerical simulation of concrete specimens [J]. Journal of Hydraulic Engineering, 2004, (10): 27-35.
[28] 方秦, 孔祥振, 吴昊, 等. 岩石Holmquist-Johnson-Cook模型参数的确定方法[J]. 工程力学, 2014, 31(03): 197-204.
FANG Qin, KONG Xiangzhen, WU Hao, et al. Determination of Holmquist-Johnson-Cook constitutive model parameters of rock [J]. Engineering mechanics, 2014, 31(03): 197-204.
[29] 刘海峰, 韩莉. 冲击荷载作用下混凝土动态力学性能数值模拟研究[J]. 固体力学学报, 2015, 36(02): 145-153.
LIU Haifeng, HAN Li. Numerical simulation research on dynamic mechanical behaviors of concrete subjected to impact loading [J]. Chinese journal of solid mechanics, 2015, 36(02): 145-153.
[30] 张社荣, 宋冉, 王超, 等. 碾压混凝土HJC动态本构模型修正及数值验证[J]. 振动与冲击, 2019, 38(12): 25-31.
ZHANG Sherong, SONG Ran, WANG Chao, et al. Modification of a dynamic constitutive model-HJC model for roller-compacted concrete and numerical verification [J]. Journal of vibration and shock, 2019, 38(12): 25-31.
[31] WU Z Y, ZHANG J H, YU H F, et al. 3D mesoscopic investigation of the specimen aspect-ratio effect on the compressive behavior of coral aggregate concrete [J]. Composites Part B: Engineering, 2020, 198: 108025.
[32] 巫绪涛, 孙善飞, 李和平. 用HJC本构模型模拟混凝土SHPB实验[J]. 爆炸与冲击, 2009, 29(02): 137-142.
WU Xutao, SUN Shanfei, LI Heping. Numerical simulation of SHPB tests for concrete by using HJC model [J]. Explosion and shock waves, 2009, 29(02): 137-142.
[33] 郭瑞奇, 任辉启, 张磊, 等. 基于混凝土细观骨料模型的SHPB仿真模拟研究[J]. 振动与冲击, 2019, 38(22): 107-116.
GUO Ruiqi, REN Huiqi, ZHANG Lei, et al. Simulation for SHPB tests based on a mesoscopic concrete aggregate model [J]. Journal of vibration and shock, 2019, 38(22):107-116.
[34] 马芹永, 苏晴晴, 马冬冬, 等. 含不同节理倾角深部巷道砂岩SHPB动态力学破坏特性试验研究[J]. 岩石力学与工程学报, 2020, 39(06): 1104-1116.
MA Qinyong, SU Qingqing, MA Dongdong, et al. SHPB experimental study on dynamic characteristics and failure behaviors of sandstone containing weakly filled joints with various angles in deep roadways [J].Chinese journal of rock mechanics and engineering, 2020, 39(06): 1104-1116.
[35] 任亮, 何瑜, 王凯. 基于整形器的UHPC材料SHPB试验数值模拟与分析[J]. 振动与冲击, 2019, 38(21): 44-52.
REN Liang, HE Yu, WANG Kai. Numerical simulation and analysis of SHPB test for UHPC material based on shaper [J]. Journal of vibration and shock, 2019, 38(21): 44-52.
[36] 孔源. 高应变率下碾压混凝土动态损伤本构模型参数确定方法研究[D]. 天津:天津大学, 2014.
    KONG Yuan. Methods for Confirming Paramters of Dynamic Constitutive Model for RCC under high strain rates [D]. Tianjin: Tianjin University, 2014.
[37] WANG C, CHEN W S, HAO H, et al. Experimental investigations of dynamic compressive properties of roller compacted concrete (RCC) [J]. Construction and building materials, 2018, 168: 671-682.
[38] HAO Y F, HAO H. Influence of the concrete DIF model on the numerical predictions of RC wall responses to blast loadings [J]. Engineering Structures, 2014, 73(aug.15): 24-38.
[39] BETONBAU. fib Model Code for Concrete Structures 2010 [J]. Ernst & Sohn, 2013.
[40] HOLMQUIST T J, JOHNSON G R, COOK W H. A Computational Constitutive Model for Concrete Subjected to Large Strains, High Strain Rates and High Pressures [M]. 14th International symposium. Quebec; Canada; ADPA. 1993: 591-600.
[41] BISCHOFF P H, PERRY S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425-450.
[42] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]. Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin-Strausberg Germany, 315.
[43] BAŽANT Z P, PLANAS J. Fracture and Size Effect in Concrete and Other Quasibrittle Materials [J]. Epfl, 1997.

PDF(2445 KB)

471

Accesses

0

Citation

Detail

段落导航
相关文章

/