三主桁断面车-桥气动特性的风洞试验研究

韩旭1,向活跃1,2,罗扣3,李永乐1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (7) : 268-275.

PDF(2771 KB)
PDF(2771 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (7) : 268-275.
论文

三主桁断面车-桥气动特性的风洞试验研究

  • 韩旭1,向活跃1,2,罗扣3,李永乐1,2
作者信息 +

Wind tunnel tests of aerodynamic characteristics of vehicle-bridge with 3-main truss section coupled system

  • HAN Xu1, XIANG Huoyue1,2, LUO Kou3, LI Yongle1,2
Author information +
文章历史 +

摘要

为研究三主桁断面车-桥组合系统的气动特性,以某大跨度斜拉桥为工程背景,采用节段模型风洞试验,通过开发的车-桥气动力同步测试装置对车-桥组合状态下各自的气动力进行了测试,研究了线路位置、双车交会间距、风攻角等因素对车-桥系统气动特性的影响,分析了紊流来流对车-桥气动特性的影响,讨论了列车气动导纳的特征。结果表明:由于绕流剪切层的影响,靠近迎风侧车辆阻力系数大于其他线,线路2上列车的升力系数最大;双车交会时,背风侧车辆的阻力系数和升力系数随交会间距的增大而增大;受桁架自身绕流的影响,紊流来流对列车气动力功率谱影响较小;阻力和升力的气动导纳随折减频率呈现先增后减的趋势。

Abstract

To investigate the aerodynamic characteristics of the vehicle-bridge coupled system for a three-main truss section bridge, a large-span cable-stayed bridge with three-main trusses section was taken as the research object, and a device for measuring aerodynamic force of vehicle-bridge synchronously was used to measure the aerodynamic forces on vehicle and bridge through a section model wind tunnel test. Many factors, such as track location, two trains crossing, wind attack angle, etc., that affect the aerodynamic characteristics of the vehicle-bridge system were studied. The influence of turbulent wind on the aerodynamic characteristics was discussed. The characteristics of aerodynamic admittance of train are discussed. The results show that due to the influence of the shear layers of flow around, the drag coefficient of vehicle on the windward side is greater than that of other lines, and the lift coefficient of train on Line 2 is the largest. When two trains pass each other, The drag and lift coefficient of the vehicle on the leeward side increase with the increase of the intersection distance. Due to the influence of the flow around the truss, the turbulent wind has little influence on the power spectrum of aerodynamic force of the train. The aerodynamic admittance of drag and lift forces increases first and then decreases with the increase of the reduction frequency.

关键词

三主桁断面 / 车-桥系统 / 气动特性 / 同步测试装置 / 气动导纳 / 风洞试验

Key words

three-main trusses section / vehicle-bridge system / aerodynamic characteristics / synchronous test device / aerodynamic admittance / wind tunnel test

引用本文

导出引用
韩旭1,向活跃1,2,罗扣3,李永乐1,2. 三主桁断面车-桥气动特性的风洞试验研究[J]. 振动与冲击, 2022, 41(7): 268-275
HAN Xu1, XIANG Huoyue1,2, LUO Kou3, LI Yongle1,2. Wind tunnel tests of aerodynamic characteristics of vehicle-bridge with 3-main truss section coupled system[J]. Journal of Vibration and Shock, 2022, 41(7): 268-275

参考文献

[1] 邹云峰, 何旭辉, 郭向荣, 等. 横风下流线箱型桥-轨道交通车辆气动干扰风洞实验研究[J]. 振动与冲击, 2017, 36(05): 95-101.
Zou Yunfeng, He Xuhui, Guo Xiangrong, et al. Wind tunnel tests for aerodynamic interference between streamline type box bridges and rail vehicles under cross wind [J]. Journal of Vibration and Shock, 2017, 36(05): 95-101.
[2] 李永乐, 廖海黎, 强士中. 车桥系统气动特性的节段模型风洞试验研究[J]. 铁道学报, 2004(03): 71-75.
Li Yongle, Liao Haili, Qiang Shizhong. Study on aerodynamic characteristics of the vehicle-bridge system by the section model wind tunnel test [J]. Journal of the China Railway Society, 2004(03): 71-75.
[3] 秦顺全, 高宗余. 中国高速铁路大跨度桥梁技术发展与展望[C]. 国际工程科技发展战略高端论坛——第七届桥梁与隧道工程技术论坛论文集. 中铁大桥勘测设计院集团有限公司, 2017: 1-12.
[4] 徐曼. 风与列车荷载作用下大跨度公铁两用斜拉桥静动力影响分析[D]. 北京交通大学, 2019.
Xu Man. Static and dynamic analysis of a long-span rail-cum-road cable-stayed bridge under wind and train loads [D]. Beijing Jiaotong University, 2019.
[5] 徐伟. 武汉天兴洲公铁两用长江大桥主桥钢梁设计[J]. 桥梁建设, 2008(01): 4-7+22.
Xu Wei. Design of steel girder of main bridge of Wuhan Tianxingzhou Changjiang river rail-cum-road bridge [J]. Bridge Construction, 2008(01): 4-7+22.
[6] 高宗余. 沪通长江大桥主桥技术特点[J]. 桥梁建设, 2014, 44(02): 1-5.
Gao Zongyu. Technical characteristics of main bridge of Hutong Changjiang river bridge [J]. Bridge Construction, 2014, 44(02): 1-5.
[7] 李永乐, 安伟胜, 蔡宪棠, 等. 倒梯形板桁主梁CFD简化模型及气动特性研究[J]. 工程力学, 2011, 28(S1): 103-109.
Li Yongle, An Weisheng, Cai Xiantang, et al. Simplified cfd modal and aerodynamic characteristics of inverted trapezoidal plate-truss deck [J]. Engineering Mechanics, 2011, 28(S1): 103-109.
[8] Suzuki M, Tanemoto K, Maeda T. Aerodynamic characteristics of train/vehicles under cross winds [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(1-2): 209-218.
[9] 李永乐, 向活跃, 侯光阳, 陈克坚. 车桥组合状态下CRH2客车横风气动特性研究[J]. 空气动力学学报, 2013, 31(05): 579-582.
Li Yongle, Xiang Huoyue, Hou Guangyang, et al. Aerodynamic characteristics of CRH2 train in combination of vehicle-bridge with cross wind action [J]. Acta Aerodynamic Sinica, 2013, 31(05): 579-582.
[10] 王玉晶, 郭薇薇, 夏禾, 等. 考虑风屏障效应的车桥系统三分力系数风洞试验研究[J]. 振动与冲击, 2018, 37(20): 88-94.
Wang Yujing, Guo Weiwei, Xia He, et al. Wind tunnel test of tri-component coefficients for a train-bridge system considering wind barrier effect [J]. Journal of Vibration and Shock, 2018, 37(20): 88-94.
[11] 邹云峰, 何旭辉, 李欢, 等. 风屏障对车桥组合状态下中间车辆气动特性的影响[J]. 振动工程学报, 2016, 29(01): 156-165.
Zou Yunfeng, He Xuhui, Li Huan, et al. Effect of wind barrier on aerodynamic characteristics for the trailing train under cases of vehicle-bridge coupling [J]. Journal of Vibration Engineering, 2016, 29(01): 156-165.
[12] Wang Ming, Li Xiaozhen, Xiao Jun, et al. An experimental analysis of the aerodynamic characteristics of a high-speed train on a bridge under crosswinds [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 177: 92-100.
[13] Xiang Huoyue, Li Yongle, Chen Suren, et al. A wind tunnel test method on aerodynamic characteristics of moving vehicles under crosswinds [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 163: 15-23.
[14] Chiu T W, Squire L C. An experimental study of the flow over a train in a crosswind at large yaw angles up to 90° [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 45(1): 47-74.
[15] 刘昊苏, 雷俊卿.大跨度双层桁架主梁三分力系数识别[J].浙江大学学报(工学版), 2019, 53(06): 1092-1100.
Liu Haosu, Lei Junqing. Identification of three-component coefficients of double deck truss girder for long-span bridge [J]. Journal of Zhejiang University (Engineering Science), 2019, 53(06): 1092-1100.
[16] 郑史雄, 李永乐, 陶奇. 天兴洲公铁两用长江大桥气动参数风洞试验[J]. 中国铁道科学, 2007(02): 25-31.
Zheng Shixiong , Li Yongle , Tao Qi. Wind tunnel test on the aerodynamic parameters of Tianxingzhou highway-railway bridge across Yangtze river [J]. China Railway Science, 2007(02): 25-31.
[17] JTG/T 3360-01-2018, 公路桥梁抗风设计规范[S]. 北京: 人民交通出版社, 2018.
JTG/T 3360-01-2018, Wind-resistant design specification for highway bridges[S]. Beijing: China Communication Press, 2018.
[18] Wu Jun, Zhou Yufen, Chen Suren. Wind-induced performance of long-span bridge with modified cross-section profiles by stochastic traffic [J]. Engineering Structures, 2012, 41: 464-476.
[19] 埃米尔•希缪, 罗伯特•H•斯坎伦. 风对结构的作用:风工程导论[M]. 刘尚培, 项海帆, 谢霁明译. 上海:同济大学出版社, 1992: 112―113.
Simiu E, Scanlan R H. Wind effects on structures: an introduction to wind engineering [M]. Translated by Liu Shangpei, Xiang Haifan, Xie Jiming. Shanghai: Tongji University Press, 1992: 112-113.
[20] 李永乐, 徐昕宇, 郭建明, 等. 六线双层铁路钢桁桥车桥系统气动特性风洞试验研究[J]. 工程力学, 2016, 33(04): 130-135.
Li Yongle, Xu Xinyu, Guo Jianming, et al. Wind tunnel tests on aerodynamic characteristics of vehicle-bridge system for six-track double-deck steel-truss railway bridge [J]. Engineering Mechanics, 2016, 33(04): 130-135.
[21] 向活跃. 高速铁路风屏障防风效果及其自身风荷载研究[D]. 西南交通大学, 2013.
Xiang Huoyue. Protection effect of wind barrier on high speed railway and its wind loads [D]. Southwest Jiaotong University, 2013.
[22] 戚振宕. 高速列车明线会车气动特性研究[D]. 西南交通大学, 2010.
Qi Zhendang. Aerodynamic research on high speed train passing each other [D]. Southwest Jiaotong University, 2010.
[23] 左太辉, 何旭辉, 邹云峰, 等. 紊流影响下车-桥系统气动力特性风洞试验[J]. 中国公路学报, 2019, 32(10): 178-190.
Zuo Taihui, He Xuhui, Zou Yunfeng, et al. Wind tunnel test of aerodynamic force characteristics on train-bridge system in the presence of turbulence [J]. China Journal of Highway and Transport, 2019, 32(10): 178-190.
[24] 杜树碧, 李明水, 马汝为. 积分尺度对矩形迎风面脉动风压特性的影响[J/OL]. 西南交通大学学报, http://kns.cnki.net/kcms/detail/51.1277.U.20201021.0856.002.html.
Du Shubi, Li Mingshui, Ma Ruwei. Effect of turbulence integral scale on fluctuating wind pressure and its distribution characteristics of rectangular upwind surface [J/OL]. Journal of Southwest Jiaotong University, http://kns.cnki.net/kcms/detail/51.1277.U.20201021.0856.002.html.
[25] 李小珍, 肖军, 刘德军,王铭. 水平横风下的移动车辆脉动风速谱[J]. 中国科学(技术科学), 2016, 46(12): 1263-1270.
Li Xiaozhen, Xiao Jun, Liu Dejun, et al. Fluctuating wind velocity spectra of moving vehicle under horizontal crosswind [J]. Scientia Sinica (Technologica), 2016, 46(12): 1263-1270.
[26] Ma Cunming, Duan Qingsong, Li Qiusheng, et al. Buffeting Forces on Static Trains on a Truss Girder in Turbulent Crosswinds [J]. Journal of Bridge Engineering, 2017, 23(11): 04018086.
[27] 徐昕宇. 复杂山区铁路风—车—桥系统耦合振动研究[D]. 西南交通大学, 2017.
Xu Xinyu. Coupling vibration of wind-rail vehicle-bridge system in complex mountainous terrain [D]. Southwest Jiaotong University, 2017.
[28] 马存明, 段青松, 廖海黎. 横风作用下钢桁梁桥上列车气动导纳的风洞试验研究[J]. 振动与冲击, 2018, 37(02): 150-155.
Ma Cunming, Duan Qingsong, Liao Haili. Wind tunnel tests for aerodynamic admittances of trains on a steel truss bridge under crosswind [J]. Journal of Vibration and Shock, 2018, 37(02): 150-155.

PDF(2771 KB)

Accesses

Citation

Detail

段落导航
相关文章

/