考虑土-结构相互作用的海上风力机结构振动控制研究

韩东东,李昕,王文华

振动与冲击 ›› 2022, Vol. 41 ›› Issue (7) : 283-290.

PDF(2159 KB)
PDF(2159 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (7) : 283-290.
论文

考虑土-结构相互作用的海上风力机结构振动控制研究

  • 韩东东,李昕,王文华
作者信息 +

Structural vibration control of offshore wind turbine considering soil-structure interaction

  • HAN Dongdong, LI Xin, WANG Wenhua
Author information +
文章历史 +

摘要

利用耦合线性弹簧模型来模拟桩基础和土体之间的相互作用,基于海上风力机整体结构耦合运动模型开发了可以考虑土-结构相互作用的固定式海上风力机结构振动控制程序(FAST-SC-SSI)。选取5-MW单桩基础海上风力机为研究对象,基于不同边界条件样本风机动力反应特性完成了机舱位置调谐质量阻尼器(TMD)参数设计。基于海上风力机结构时频域响应变化规律及控制率揭示了TMD的减振机理及土-结构相互作用对于减振效果的影响。通过对比得出:考虑土-结构相互作用对海上风力机结构调谐质量阻尼器设计至关重要。

Abstract

The fully coupled aero-servo-hydro-elastic-linear foundation simulation tool is developed based on the recompiled FAST-SC-SSI, and the coupled linear spring is applied to simulate the soil-structure interactions (SSI). The reference offshore wind turbines is designed according to the NREL 5-MW baseline wind turbine and a monopile foundation. The parameters of tuned mass damper (TMD) in nacelle are designed based on the dynamic characteristics of monopile OWT with rigid and flexible boundaries. Reductions of the structural responses in the time and frequency domains are adopted to reveal the vibration control mechanisms of TMD and evaluate the influence of SSI on the TMD mitigation effects. Based on the performed investigations, it can be seen the significant influence of SSI on the reductions of structural responses, which should be emphasized in the design of TMDs for OWTs.

关键词

海上风力机 / 土-结构相互作用 / 振动控制 / 调谐质量阻尼器 / 动力反应分析

Key words

Offshore wind turbine / Soil-structure interaction / Vibration control / Tuned mass damper / Dynamic analysis

引用本文

导出引用
韩东东,李昕,王文华. 考虑土-结构相互作用的海上风力机结构振动控制研究[J]. 振动与冲击, 2022, 41(7): 283-290
HAN Dongdong, LI Xin, WANG Wenhua. Structural vibration control of offshore wind turbine considering soil-structure interaction[J]. Journal of Vibration and Shock, 2022, 41(7): 283-290

参考文献

[1] 杨佳佳, 贺尔铭, 姚文旭,等.抑制海上浮式风力机振动的TMD限位策略研究[J].振动与冲击,2020,39(15):18-24,57.
[1] Yang Jiajia, He Erming, Yao Wenxu, et al. Research on TMD Limiting Strategies for Suppressing Vibration of Offshore Floating Wind Turbines[J]. Vibration and Shock,2020,39(15):18-24,57.
[2] 黄致谦, 丁勤卫, 李春. 三种漂浮式风力机调谐质量阻尼器稳定性控制研究[J]. 振动与冲击, 2019, 038(021):112-119,147.
[2] Huang Zhiqian, Ding Qinwei, Li Chun. Research on stability control of tuned mass dampers for three floating wind turbines[J]. Journal of Vibration and Shock, 2019, 038(021):112-119,147.
[3] 丁勤卫, 郝文星, 李春,等. 漂浮式风力机结构动力学响应TMD控制及其参数优化研究[J]. 振动与冲击, 2018, v.37;No.331(23):69-78.
[3] Ding Qinwei, Hao Wenxing, Li Chun, et al. Research on TMD control and parameter optimization of floating wind turbine structure dynamic response[J]. Journal of Vibration and Shock, 2018, v.37;No.331(23):69-78 .
[4] Zhang Z L, Chen J B, Li J. Theoretical study and experimental verification of vibration control of offshore wind turbines by a ball vibration absorber[J]. Structure and Infrastructure Engineering, 2014, 10(8): 1087-1100.
[5] Lackner M A, Rotea M A. Structural control of floating wind turbines[J]. Mechatronics,2011, 21(4): 704-719.
[6] Wang W , Li X , Zhao H , et al. Vibration control of a pentapod offshore wind turbine under combined seismic wind and wave loads using multiple tuned mass damper[J]. Applied Ocean Research, 2020, 103:102254.
[7] Buckley T, Watson P, Cahill P, et al. Mitigating the structural vibrations of wind turbines using tuned liquid column damper considering soil-structure interaction[J]. Renewable Energy, 2018, 120: 322-341.
[8] 楼梦麟, 宗刚, 牛伟星, et al. 土-桩-钢结构-TLD系统振动台模型试验研究[J]. 地震工程与工程振动, 2006, 26(006):172-177.
[8] Lou Menglin, Zong Gang, Niu Weixing, et al. Shaking table model test of soil-pile-steel structure-TLD system[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(006):172-177.
[9] 许宗伟. 桩土相互作用对桥塔TMD风振控制的影响研究[D]. 哈尔滨工业大学, 2007.
[9] Xu Zongwei. Study on the influence of pile-soil interaction on the wind-induced vibration control of bridge tower TMD[D]. Harbin Institute of Technology, 2007.
[10] 陈国兴, 陈继华, 王志华,等. 土-结构-TMD体系振动台模型试验与数值模拟对比研究[J]. 岩土工程学报, 2003, 25(5):532-537.
[10] Chen Guoxing, Chen Jihua, Wang Zhihua, et al. Comparative study on shaking table model test and numerical simulation of soil-structure-TMD system[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5):532-537.
[11] Jonkman J, Musial W. Offshore code comparison collaboration (OC3) for IEA Wind Task 23 offshore wind technology and deployment[R]. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2010.
[12] Lackner M A , Rotea M A . Passive structural control of offshore wind turbines[J]. Wind Energy, 2011, 14(3):373-388.
[13] IEC. Wind turbines, 2009. Part 3: Design Requirements for Offshore Wind Turbines. International Electrotechnical Commission, Geneva, Switzerland. IEC 61400-3 (ed. 1)
[14] Foley J T, Gutowski T G. TurbSim: Reliability-based wind turbine simulator[C]// Electronics and the Environment, 2008. ISEE 2008. IEEE International Symposium on. IEEE, 2008.
[15] Kaimal J C, Wyngaard J C, Izumi Y, et al. Spectral characteristics of surface‐layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society, 1972, 98.
[16] Passon P. Memorandum: Derivation and description of the soil-pile-interaction models. Report, University of Stuttgart 2006.
[17] Bir G. Blades and Towers Modal Analysis Code (BModes): Verification of Blade Modal Analysis Capability[J]. New York American Institute of Aeronautics & Astronautics Inc, 2013.

PDF(2159 KB)

4553

Accesses

0

Citation

Detail

段落导航
相关文章

/