基于C藤Copula的多维随机环境变量极限状态曲面

涂志斌1,姚剑锋1,黄铭枫2,楼文娟2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (7) : 53-61.

PDF(1712 KB)
PDF(1712 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (7) : 53-61.
论文

基于C藤Copula的多维随机环境变量极限状态曲面

  • 涂志斌1,姚剑锋1,黄铭枫2,楼文娟2
作者信息 +

Environmental  surface of multi-dimensional random variables based on C-vine Copulas

  • TU Zhibin1, YAO Jianfeng1, HUANG Mingfeng2, LOU Wenjuan2
Author information +
文章历史 +

摘要

针对联合分布模型较为复杂时Rosenblatt变换难以实施的现状,提出了基于C藤Copula的多维随机变量极限状态曲面计算公式及数值算法。在该方法中联合分布模型由C藤Copula建立,Rosenblatt变换以二维Copula偏导数的形式表达,采用数值算法求解。结合观测数据研究了平均风速、有效波高和谱峰周期的极限状态曲面,提出了根据极限状态曲面等值线确定风浪参数组合值,并讨论了不同Copula的影响。结果表明,C藤Copula在局部和整体上均能最优表达变量间的相关结构,更适用于建立多维随机变量的联合分布模型;基于C藤Copula的极限状态曲面能有效表达二维变量间的相关结构,其等值线的外包络是二维极限状态曲线;与风浪参数极值相比,根据等值线确定的组合值在保证多维变量各自及联合重现期的前提下有所降低,可使结构设计更加经济合理。

Abstract

A formula and its numerical algorithm based on C-vine Copulas for environmental surface of dimensional random variables was developed to overcome the difficulty when Rosenblatt transformation was implemented with complex joint distribution model. In this formula joint distribution model was constructed by C-vine Copulas, Rosenblatt transformation was expressed as partial derivative of two dimensional Copula function and solved by numerical algorithm. Environmental surface of mean wind speed, significant wave height and peak spectral wave period, which were derived from an observation record, was constructed by this formula. Furthermore, a method of determining combination values of wind and wave variables based on level curves of environmental surface was proposed, and its influence caused by different Copulas was also discussed. The results show that it is more suitable for C-vine Copulas, which is optimal to express the correlation ship for random variables in local and general, to constructed joint distribution models. The correlation ship for two random variables can be simultaneously expressed by environmental surface based on C-vine Copulas as the level curves of environmental surface are contained within the boundary of 2D contour line. The combination values of wind and wave variables determined by level curves that whose return periods of respective and joint variables are ensured can be reduced compared to their extremes, making structural design more economical and reasonable.

关键词

C藤Copula / 联合分布模型 / 极限状态曲面 / 等值线 / 风浪参数组合

Key words

C-vine Copulas / joint distribution model / environmental surface / level curves / combination of wind and wave variables

引用本文

导出引用
涂志斌1,姚剑锋1,黄铭枫2,楼文娟2. 基于C藤Copula的多维随机环境变量极限状态曲面[J]. 振动与冲击, 2022, 41(7): 53-61
TU Zhibin1, YAO Jianfeng1, HUANG Mingfeng2, LOU Wenjuan2. Environmental  surface of multi-dimensional random variables based on C-vine Copulas[J]. Journal of Vibration and Shock, 2022, 41(7): 53-61

参考文献

[1] Winterstein, S.R., Ude, T.C., Cornell, C.A., et al. Environmental parameters for extreme response: inverse FORM with omission factors [C]. In: Proceedings of ICOSSAR-93. Innsbruck, 1993.
[2] 涂志斌, 黄铭枫, 楼文娟. 基于EC法的风浪联合作用主塔-基础体系极限荷载效应[J]. 振动与冲击, 2017, 36(19): 133-142.
TU Zhibin, HUANG Mingfeng, LOU Wenjuan.Extreme load effects on a bridge tower-basement system under the joint action of wind and wave based on the EC method [J]. Journal of Vibration and Shock, 2017, 36(19):133-142.
[3] Van de Lindt J W, Niedzwecki J M. Environmental contour analysis in earthquake engineering [J]. Engineering Structures, 2000, 22(12):1661-1676.
[4] Lystad T M , Fenerci A , Iseth O . Buffeting response of long-span bridges considering uncertain turbulence parameters using the environmental contour method[J]. Engineering Structures, 2020, 213:110575.
[5] Huseby A B, Vanem E, Natvig B. A new approach to environmental contours for ocean engineering applications based on direct Monte Carlo simulations [J]. Ocean Engineering, 2013, 60(60): 124-135.
[6] Huseby A B, Vanem E, Natvig B. Alternative environmental contours for structural reliability analysis [J]. Structural Safety, 2015, 54: 32-45.
[7] Jonathan P, Ewans K. Modeling the seasonality of extreme waves in the Gulf of Mexico [J]. Journal of Offshore Mechanics and Arctic Engineering, 2008, 133(2): 113-123.
[8] Saranyasoontorn K, Manuel L. Efficient models for wind turbine extreme loads using inverse reliability [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(10): 789-804.
[9] Saranyasoontorn K, Manuel L. Design loads for wind turbines using the environmental contour method [J]. Journal of Solar Energy Engineering, 2006, 128(4): 554-561.
[10] 董胜, 丛锦松, 余海静. 涠洲岛海域年极值风浪联合设计参数估计[J]. 中国海洋大学学报: 自然科学版, 2006, 36(3): 489-492.
DONG Sheng, CONG Jinsong, YU Haijing. Design parameter estimation of joint extreme significant wave height and wind speed at Weizhoudao observation station [J]. Periodical of Ocean University of China, 2006, 36(3): 489-492.
[11] Yue S. The Gumbel logistic model for representing a multivariate storm event [J]. Advances in Water Resources, 2000, 24(2): 179-185.
[12] Silva-González F, Heredia-Zavoni E, Montes-Iturrizaga R. Development of environmental contours using Nataf distribution model [J]. Ocean Engineering, 2013, 58: 27-34.
[13] Régis, Lebrun, and, et al. An innovating analysis of the Nataf transformation from the copula viewpoint[J]. Probabilistic Engineering Mechanics, 2009.
[14] 涂志斌, 黄铭枫, 楼文娟. 基于Copula函数的建筑动力风荷载相关性组合[J]. 浙江大学学报(工学版), 2014, 48(8): 1370-1375.
TU Zhibin, HUANG Mingfeng, LOU Wenjuan. Dynamic wind load combination of tall buildings based on Copula functions [J]. Journal of Zhejiang University(Engineering Science), 2014, 48(8): 1370-1375.
[15] Zhang X, Chen X. Assessing probabilistic wind load effects via a multivariate extreme wind speed model: A unified framework to consider directionality and uncertainty [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 147: 30-42.
[16] Zhang X, Chen X. Influence of dependence of directional extreme wind speeds on wind load effects with various mean recurrence intervals [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 148: 45-56.
[17] 黄铭枫, 李强, 涂志斌, 等. 基于Copula函数的杭州地区多风向极值风速估计[J]. 浙江大学学报(工学版), 2018, 52(005): 828-835.
HUANG Mingfeng, LI Qiang, TU Zhibin,et al. Multi-directional extreme wind speed estimation in Hangzhou using Copula functions [J]. Journal of Zhejiang University(Engineering Science),2018, 52(5): 828-835.
[18] Bedford T, Cooke R M. Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines [J]. Annals of Mathematics and Artificial Intelligence, 2001, 32(1):245-268.
[19] Bedford T, Cooke R M. Vines: A New Graphical Model for Dependent Random Variables [J]. Annals of Statistics, 2002, 30(4):1031-1068.
[20] Jaworski P, Hardle W, Durante F, et al. Copula Theory and Its Applications [M]. Springer, 2010.
[21] Montes-Iturrizaga R , Heredia-Zavoni E . Multivariate environmental contours using C-vine copulas [J]. Ocean Engineering, 2016, 118(may 15):68-82.
[22] 樊学平, 杨光红, 肖青凯, 等. 考虑安全性的桥梁主梁体系可靠性动态藤Copula预测[J]. 同济大学学报(自然科学版), 2019, 48(02): 165-175.
FAN Xueping, YANG Guanghong, XIAO Qingkai, et al. Dynamic vine-copula prediction approach of bridge girder system reliability considering structural safety [J]. Journal of Tongji University (Natural Science), 2020, 48(2): 165-175.
[23] 陈好杰, 程浩忠, 徐国栋, 等. 基于云理论的风电场群长期出力区间预测[J]. 电力系统保护与控制, 2019, 47(3): 110-117.
CHEN Haojie, CHENG Haozhong, XU Guodong, et al. Interval prediction for long-term wind power of wind farm clusters based on cloud theory [J]. Power System Prediction and Control, 2019, 47(3): 110-117.
[24] 李磊, 叶五一, 缪柏其. 基于C藤copula的收益率自相依结构估计以及条件VaR计算[J]. 中国科学技术大学学报, 2013(9):745-753.
LI Lei, YE Wuyi, MIAO Baiqi. Estimating auto-dependence structure and conditional VaR based on canonical vine copula [J]. Journal of University of Science and Technology of China, 2013, 43(9): 746-753.
[25] Valamanesh V, Myers A T, Arwade S R. Multivariate analysis of extreme metocean conditions for offshore wind turbines [J]. Structural Safety, 2015, 55: 60-69.
[26] Li, Qinyuan, Gao, Zhen, Moan, Torgeir. Modified environmental contour method for predicting long-term extreme responses of bottom-fixed offshore wind turbines [J]. Marine Structures, 2016, 48:15-32.
[27] Montes-Iturrizaga R, Heredia-Zavoni E. Environmental contours using copulas [J]. Applied Ocean Research, 2015, 52:125-139.
[28] Genest C, Rivest L P, Statistical inference procedures for bivariate Archimedean copulas [J]. Journal of the American Statistical association, 1993,88:1034-1043.
[29] IEC 61400-3. Wind Turbine-Part 3: design requirements for offshore wind turbines [S]. Edition 1.0 2009-02. Geneva: International Electrotechnical Commission, 2009.
[30] Zhang Y, Beer M, Quek S T. Long-term performance assessment and design of offshore structures [J]. Computers and Structures, 2015, 154: 101-115.

PDF(1712 KB)

Accesses

Citation

Detail

段落导航
相关文章

/