[1] Winterstein, S.R., Ude, T.C., Cornell, C.A., et al. Environmental parameters for extreme response: inverse FORM with omission factors [C]. In: Proceedings of ICOSSAR-93. Innsbruck, 1993.
[2] 涂志斌, 黄铭枫, 楼文娟. 基于EC法的风浪联合作用主塔-基础体系极限荷载效应[J]. 振动与冲击, 2017, 36(19): 133-142.
TU Zhibin, HUANG Mingfeng, LOU Wenjuan.Extreme load effects on a bridge tower-basement system under the joint action of wind and wave based on the EC method [J]. Journal of Vibration and Shock, 2017, 36(19):133-142.
[3] Van de Lindt J W, Niedzwecki J M. Environmental contour analysis in earthquake engineering [J]. Engineering Structures, 2000, 22(12):1661-1676.
[4] Lystad T M , Fenerci A , Iseth O . Buffeting response of long-span bridges considering uncertain turbulence parameters using the environmental contour method[J]. Engineering Structures, 2020, 213:110575.
[5] Huseby A B, Vanem E, Natvig B. A new approach to environmental contours for ocean engineering applications based on direct Monte Carlo simulations [J]. Ocean Engineering, 2013, 60(60): 124-135.
[6] Huseby A B, Vanem E, Natvig B. Alternative environmental contours for structural reliability analysis [J]. Structural Safety, 2015, 54: 32-45.
[7] Jonathan P, Ewans K. Modeling the seasonality of extreme waves in the Gulf of Mexico [J]. Journal of Offshore Mechanics and Arctic Engineering, 2008, 133(2): 113-123.
[8] Saranyasoontorn K, Manuel L. Efficient models for wind turbine extreme loads using inverse reliability [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(10): 789-804.
[9] Saranyasoontorn K, Manuel L. Design loads for wind turbines using the environmental contour method [J]. Journal of Solar Energy Engineering, 2006, 128(4): 554-561.
[10] 董胜, 丛锦松, 余海静. 涠洲岛海域年极值风浪联合设计参数估计[J]. 中国海洋大学学报: 自然科学版, 2006, 36(3): 489-492.
DONG Sheng, CONG Jinsong, YU Haijing. Design parameter estimation of joint extreme significant wave height and wind speed at Weizhoudao observation station [J]. Periodical of Ocean University of China, 2006, 36(3): 489-492.
[11] Yue S. The Gumbel logistic model for representing a multivariate storm event [J]. Advances in Water Resources, 2000, 24(2): 179-185.
[12] Silva-González F, Heredia-Zavoni E, Montes-Iturrizaga R. Development of environmental contours using Nataf distribution model [J]. Ocean Engineering, 2013, 58: 27-34.
[13] Régis, Lebrun, and, et al. An innovating analysis of the Nataf transformation from the copula viewpoint[J]. Probabilistic Engineering Mechanics, 2009.
[14] 涂志斌, 黄铭枫, 楼文娟. 基于Copula函数的建筑动力风荷载相关性组合[J]. 浙江大学学报(工学版), 2014, 48(8): 1370-1375.
TU Zhibin, HUANG Mingfeng, LOU Wenjuan. Dynamic wind load combination of tall buildings based on Copula functions [J]. Journal of Zhejiang University(Engineering Science), 2014, 48(8): 1370-1375.
[15] Zhang X, Chen X. Assessing probabilistic wind load effects via a multivariate extreme wind speed model: A unified framework to consider directionality and uncertainty [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 147: 30-42.
[16] Zhang X, Chen X. Influence of dependence of directional extreme wind speeds on wind load effects with various mean recurrence intervals [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 148: 45-56.
[17] 黄铭枫, 李强, 涂志斌, 等. 基于Copula函数的杭州地区多风向极值风速估计[J]. 浙江大学学报(工学版), 2018, 52(005): 828-835.
HUANG Mingfeng, LI Qiang, TU Zhibin,et al. Multi-directional extreme wind speed estimation in Hangzhou using Copula functions [J]. Journal of Zhejiang University(Engineering Science),2018, 52(5): 828-835.
[18] Bedford T, Cooke R M. Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines [J]. Annals of Mathematics and Artificial Intelligence, 2001, 32(1):245-268.
[19] Bedford T, Cooke R M. Vines: A New Graphical Model for Dependent Random Variables [J]. Annals of Statistics, 2002, 30(4):1031-1068.
[20] Jaworski P, Hardle W, Durante F, et al. Copula Theory and Its Applications [M]. Springer, 2010.
[21] Montes-Iturrizaga R , Heredia-Zavoni E . Multivariate environmental contours using C-vine copulas [J]. Ocean Engineering, 2016, 118(may 15):68-82.
[22] 樊学平, 杨光红, 肖青凯, 等. 考虑安全性的桥梁主梁体系可靠性动态藤Copula预测[J]. 同济大学学报(自然科学版), 2019, 48(02): 165-175.
FAN Xueping, YANG Guanghong, XIAO Qingkai, et al. Dynamic vine-copula prediction approach of bridge girder system reliability considering structural safety [J]. Journal of Tongji University (Natural Science), 2020, 48(2): 165-175.
[23] 陈好杰, 程浩忠, 徐国栋, 等. 基于云理论的风电场群长期出力区间预测[J]. 电力系统保护与控制, 2019, 47(3): 110-117.
CHEN Haojie, CHENG Haozhong, XU Guodong, et al. Interval prediction for long-term wind power of wind farm clusters based on cloud theory [J]. Power System Prediction and Control, 2019, 47(3): 110-117.
[24] 李磊, 叶五一, 缪柏其. 基于C藤copula的收益率自相依结构估计以及条件VaR计算[J]. 中国科学技术大学学报, 2013(9):745-753.
LI Lei, YE Wuyi, MIAO Baiqi. Estimating auto-dependence structure and conditional VaR based on canonical vine copula [J]. Journal of University of Science and Technology of China, 2013, 43(9): 746-753.
[25] Valamanesh V, Myers A T, Arwade S R. Multivariate analysis of extreme metocean conditions for offshore wind turbines [J]. Structural Safety, 2015, 55: 60-69.
[26] Li, Qinyuan, Gao, Zhen, Moan, Torgeir. Modified environmental contour method for predicting long-term extreme responses of bottom-fixed offshore wind turbines [J]. Marine Structures, 2016, 48:15-32.
[27] Montes-Iturrizaga R, Heredia-Zavoni E. Environmental contours using copulas [J]. Applied Ocean Research, 2015, 52:125-139.
[28] Genest C, Rivest L P, Statistical inference procedures for bivariate Archimedean copulas [J]. Journal of the American Statistical association, 1993,88:1034-1043.
[29] IEC 61400-3. Wind Turbine-Part 3: design requirements for offshore wind turbines [S]. Edition 1.0 2009-02. Geneva: International Electrotechnical Commission, 2009.
[30] Zhang Y, Beer M, Quek S T. Long-term performance assessment and design of offshore structures [J]. Computers and Structures, 2015, 154: 101-115.