基于贝叶斯理论嵌套抽样的结构物理参数识别研究

王坤阳,公茂盛,左占宣

振动与冲击 ›› 2022, Vol. 41 ›› Issue (7) : 74-80.

PDF(2941 KB)
PDF(2941 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (7) : 74-80.
论文

基于贝叶斯理论嵌套抽样的结构物理参数识别研究

  • 王坤阳,公茂盛,左占宣
作者信息 +

Structural physical parameter identification based on Bayesian theory and nested sampling

  • WANG Kunyang, GONG Maosheng, ZUO Zhanxuan
Author information +
文章历史 +

摘要

基于贝叶斯估计的结构物理参数识别中,传统马尔可夫蒙特卡洛抽样(MCMC)在解决高维密度函数问题时往往存在抽样效率低、不收敛等问题。本文采用嵌套抽样方法代替传统的马尔可夫蒙特卡洛抽样,解决了结构物理参数识别中高维后验联合概率密度函数问题。首先从结构加速度时程响应时程出发,建立了后验联合概率密度函数,然后重新定义了结构参数先验分布与似然函数,实现了基于嵌套抽样的结构物理参数识别。采用所提方法分别对10层剪切结构数值模型与3层RC框架结构振动台试验模型进行识别,得到了结构刚度及阻尼比等参数,并与实验现象进行了对比。结果表明,所提方法可以解决贝叶斯公式高维后验联合概率密度函数问题,且能高效识别结构物理参数,同时也验证了方法在真实结构物理参数识别与结构损伤识别中的适用性与可靠性。

Abstract

In the identification of structural parameters based on Bayesian estimation, the most widely used Markov Chain Monte Carlo (MCMC) sampling often encounters the problems such as low sampling efficiency and non-convergence, especially in solving high-dimensional joint posterior function. The Nested sampling is proposed and modified to solve the high-dimensional joint posterior function problem instead of MCMC sampling in the structural parameter identification in this paper. The joint posterior function is derived from the structural acceleration response time-history firstly, and then the prior and likelihood are re-constructed to realize the sampling and identity the structural parameter. The parameters of a 10-story shear numerical building and a 3-story shaking table test structural model are identified by using the Nested sampling method, and the physical parameters such as stiffness and damping ratio obtained. The results show that the proposed method can be used to solve the high dimensional joint posterior function problem and identify the structural parameters efficiently and reliably. It is also shown that the proposed method can be used in parameter identification and damage detection for real engineering structure.

关键词

结构物理参数识别 / 贝叶斯估计 / 嵌套抽样 / 振动台试验 / 结构损伤识别

Key words

Structural physical parameter identification / Bayesian method / Nested sampling / Shaking table test / Structural damage identification

引用本文

导出引用
王坤阳,公茂盛,左占宣. 基于贝叶斯理论嵌套抽样的结构物理参数识别研究[J]. 振动与冲击, 2022, 41(7): 74-80
WANG Kunyang, GONG Maosheng, ZUO Zhanxuan. Structural physical parameter identification based on Bayesian theory and nested sampling[J]. Journal of Vibration and Shock, 2022, 41(7): 74-80

参考文献

[1] 曹晖,孙海飞. 结构损伤识别中噪声的模拟[J]. 振动与冲击, 2010, 29(5): 106-109.
CAO Hui, LIN Xiu-ping. The noise simulation in structural damage identification[J]. Journal of Vibration and Shock, 2010, 29(5): 106-109.
[2] 侯立群,赵雪峰,欧进萍,等. 结构损伤诊断不确定性方法研究进展[J]. 振动与冲击, 2014, 33(18): 50-58.
HOU Li-qun, ZHAO Xue-feng, OU Jin-ping, et al. A review of nondeterministic methods for structural damage diagnosis[J]. Journal of Vibration and Shock, 2014, 33(18): 50-58.
[3] Beck J L. Statistical system identification of structures[C]// Proceedings of the Fifth International Conference on Structural Safety and Reliability. New York: ASCE, 1989. 1395 - 1402.
[4] Vanik M W. A Bayesian probabilistic approach to structural health monitoring [D] Pasadena, CA: California Institute of Technology, 1997
[5] Beck J L, Katafygiotis L S. Updating models and their uncertainties. I: Bayesian statistical framework[J]. Journal of Engineering Mechanics, 1998, 124(4): 455-461.
[6] Beck J L, Siu-Kui Au. Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation [J]. Journal of Engineering. Mechanics 2002.128:380-391.
[7] H Sohn, K H Law. Bayesian probabilistic damage detection of a reinforced‐concrete bridge column[J]. Earthquake Engineering & Structural Dynamics, 2000, 29(8): 1131-1152.
[8] 王建江. 基于贝叶斯统计方法的桥梁损伤识别研究[D]. 浙江大学[D], 2005.
Wang Jianjiang. Reasearch on Bridge Damage Identification Based on Bayesian Statistical Approach[D]. 2005.
[9] 李小华, 谢礼立, 公茂盛. 结构物理参数识别的贝叶斯估计马尔可夫蒙特卡罗方法[J]. 振动与冲击, 2010, 29(4): 59-63.
LI Xiaohua, XIE Lili, GONG Maosheng. Structural physical parameter identification using Bayesian estimation with Markov chain Monte Carlo methods[J]. Journal of Vibration and Shock, 2010, 29(4): 59-63.
[10] Ching J, Muto M, Beck J L. Bayesian Linear Structural Model Updating using Gibbs Sampler with Modal Data[C]//Proceedings of the 9th International Conference on Structural Safety and Reliability. Millpress, 2005: 2609-2616.
[11] 刘书奎, 吴子燕, 张玉兵. 基于Gibbs抽样的马尔科夫蒙特卡罗方法在结构物理参数识别及损伤定位中的研究[J]. 振动与冲击, 2011, 30(10): 203-207.
Liu Shu-kui, Wu Zi-yan, Zhang Yu-bing. The identification of physical parameters and damage locations using the Gibbs sampling based on the Markov Chain Monte Carlo method. Journal of Vibration and Shock, 2011, 30(10): 203-207.
[12] 沈金磊. 基于先进的贝叶斯概率推断抽样方法的结构损伤识别及其在桁架结构中的应用[D]. 合肥工业大学, 2014.
[13] Cheung S H, Beck J L. Bayesian Model Updating Using Hybrid Monte Carlo Simulation with Application to Structural Dynamic Models with Many Uncertain Parameters[J]. Journal of Engineering Mechanics, 2009, 135(4): 243-255.
[14] J Skilling. Nested sampling[C]//AIP Conference Proceedings. American Institute of Physics, 2004, 735(1): 395-405.
[15] J S Speagle. dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences[J]. Monthly Notices of the Royal Astronomical Society, 2020, 493(3): 3132-3158.
[16] 曹彤彤, 曾献奎, 吴吉春. 嵌套抽样算法用于地下水模型评价的算例研究[J]. 水文地质工程地质, 2017, 44(2): 69-76.
CAO Tongtong, Zeng Xiankui, WU Jichun. Application of nested sampling algorithm for assessing the uncertainty in groundwater flow model[J]. Hydrogeology & Engineering Geology,2017,44(2):69-76
[17] 高艳滨. 基于贝叶斯模型更新的结构损伤识别方法改进及应用[D]. 哈尔滨: 中国地震局工程力学研究所, 2015.
GAO Yan-bin. Improvement and application of structural damage identification method based on Bayesian model updating[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2015.
[18] Keeton C R. On statistical uncertainty in nested sampling[J]. Monthly Notices of the Royal Astronomical Society, 2011, 414(2): 1418-1426.
[19] Gong M, Zuo Z, Wang X, et al. Comparing seismic performances of pilotis and bare RC frame structures by shaking table tests[J]. Engineering Structures, 2019, 199: 109442.
[20] Zhao Y, Gong M, Zuo Z, et al. Bayesian estimation approach based on modified SCAM algorithm and its application in structural damage identification[J]. Structural Control and Health Monitoring, 2020: e2654.

PDF(2941 KB)

525

Accesses

0

Citation

Detail

段落导航
相关文章

/