直升机尾传动轴系统易超临界工作,采用一种新型的限幅装置对其进行跨临界减振研究。分别建立尾传动轴动力学方程组,限幅装置动力学方程组和弹性支承动力学方程组,并基于界面协调理论相互耦合,建立具有限幅装置的直升机尾传动轴系统耦合动力学方程组。通过数值算法求解系统方程组,分别研究了偏心量、预紧力、碰摩间隙、辅助支座与摩擦环间隙以及碰摩摩擦系数对系统幅频响应特性的影响规律。结果表明:尾传动轴和限幅装置之间的碰摩使系统产生了附加刚度,导致转轴在共振点处出现跳跃和滞后现象;同时,限幅装置可以有效的降低转轴过临界转速的振动幅值,但不同参数下的减振效果不同,在设计时需要考虑。本研究为直升机尾传动轴系统的减振设计提供理论指导。
Abstract
The helicopter tail drive shaft system is accessible to operate in supercritical condition, so a new type of limiting device is employed to reduce its transcritical vibration. The dynamic equations of the tail drive shaft, the dynamic equations of the limiting device and the dynamic equations of the elastic support are established, respectively, and the coupling dynamic equations of helicopter tail transmission shaft system with limiting device are proposed based on the interface coordination theory. The system equations are solved by a numerical algorithm, and the effects of eccentricity, preload, rubbing clearance, clearance between auxiliary support and friction ring and rubbing friction coefficient on the amplitude-frequency response characteristics of the system are investigated, respectively. The results show that the limiting device can effectively reduce the over-critical amplitude of the system, and the damping effect is varied under different parameters, which needs to be considered in the design. The study provides theoretical guidance for the vibration reduction design of helicopter tail drive shaft system.
关键词
限幅装置 /
直升机尾传动轴 /
耦合动力学 /
碰摩 /
减振
{{custom_keyword}} /
Key words
limiting device /
helicopter tail drive shaft /
coupling dynamics /
rub-impact /
vibration reduction
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 倪德. 智能弹簧减振系统设计方法及其在传动轴系中的应用研究[D]. 南京:南京航空航天大学, 2015.
Ni D. Research on Smart Spring Vibration Suppression Method and Its Application in the Drive Shaft With Multi-Supports[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
[2] Montagnier O, Hochard C. Dynamics of a supercritical composite shaft mounted on viscoelastic supports[J]. Journal of Sound and Vibration, 2014, 333(2): 470-484.
[3] Zbigniew D, Witold P. Research on dynamics of a supercritical propulsion shaft equipped with a dry friction damper[J]. Aircraft Engineering and Aerospace Technology, 2002, 74(5): 447-454.
[4] Zbigniew D, Witold P. Nonlinear Dynamic Model for Flexural Vibrations Analysis of a Supercritical Helicopter’s Tail Rotor Drive Shaft[C]. International Congress of Aeronautical Sciences, 2000:183.1-183.9.
[5] Ozaydin O, Cigeroglu E. Effect of Dry Friction Damping on the Dynamic Response of Helicopter Tail Shaft[C]. Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics & Laser Vibrometry, 2017, 8: 23-30.
[6] Childs D W, Bhattacharya A. Prediction of Dry-Friction Whirl and Whip between a Rotor and a Stator[J]. Journal of Vibration and Acoustics, 2007, 129(3): 355-362.
[7] 范天宇, 廖明夫. 转子干摩擦阻尼器及其减振机理[J]. 机械科学与技术, 2005, 24(9): 1062-1065.
Fan T Y, Liao M F. Dynamic Behavior of a Rotor with Dry Friction Dampers[J]. Mechanical Science and Technology, 2005, 24(9): 1062-1065.
[8] Liao M F, Song M B, Wang S J. Active Elastic Support/Dry Friction Damper with Piezoelectric Ceramic Actuator[J]. Shock and Vibration, 2014, 2014: 1-10.
[9] 戴兴建,张小章,金兆熊. 转子与限位器局部与整圈碰摩试验研究[J]. 航空动力学报, 2000, 15(4): 405-409.
Dai X J, Zhang X Z, Jin Z X. Experiments of Partial and Full Rotor/Stop Rubbings[J]. Journal of Aerospace Power, 2000, 15(4): 405-409.
[10] 戴兴建, 董金平,张小章. 不平衡量对转子碰摩振动的影响[J]. 机械工程学报, 2001, 37(6): 90-93+98.
Dai X J, Dong J P Zhang X Z. EFFECTS OF UNBALANCES ON THE ROTOR/STOP RUBBING[J]. Chinese Journal of Mechanical Engineering, 2001, 37(6): 90-93+98.
[11] Hutchinson J R. Shear coefficients for Timoshenko beam theory[J]. Journal of Applied Mechanics, 2001, 68: 959-960.
[12] Friswell M I, Penny J E T, Garvey S D, et al. Dynamics of rotating machines[M]. Cambridge University Press, London, 2010.
[13] 李岩, 廖明夫, 王四季, 等. 挤压油膜阻尼器同心度及碰摩对转子振动特性的影响[J]. 振动与冲击, 2020, 36(1): 150-156+174.
Li Y, Liao M F, Wang S J, et al. Effects of squeeze film damper concentricity and rubbing on rotor vibration characteristics[J]. Journal of Vibration and Shock, 2020, 36(1): 150-156+174.
[14] Fang X, Zhang D B, Zhang X Y, et al. Chaos of flexible rotor system with critical speed in magnetic bearing based on the improved precise Runge-Kutta hybrid integration[J]. Advances in Mechanical Engineering, 2018,10(9): 1-14.
[15] Zhang S Y, Deng Z C, Li W C. A precise Runge-Kutta integration and its application for solving nonlinear dynamical systems[J]. Applied Mathematics and Computation, 2007, 184(2): 496-502.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}