考虑侧壁影响的偏心单刚体地震响应分析

贾传果1,2,潘家富2,李建广2,马丽2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (8) : 116-123.

PDF(2167 KB)
PDF(2167 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (8) : 116-123.
论文

考虑侧壁影响的偏心单刚体地震响应分析

  • 贾传果1,2,潘家富2,李建广2,马丽2
作者信息 +

Seismic analysis of eccentric single-rigid-body considering the influence of colliding-to-wall

  • JIA Chuanguo1,2,PAN Jiafu2,LI Jianguang2,MA Li2
Author information +
文章历史 +

摘要

地震时建筑内高大器物,如柜体、冰箱等,刚体的晃动、倾倒会导致一定的人员伤亡和经济损失。建筑中多数器物放置在靠近墙体的部位。而已有关于刚体地震响应分析的文献未考虑碰壁的影响。地震过程中,碰壁会改变刚体运动模式,增加刚体的倒塌概率,故考虑碰壁的影响对于模拟刚体的地震响应显得尤为重要。为此,本文首先利用Lagrange定理建立刚体运动方程;并采用Rosenbrock积分方法建立了刚体摇摆运动响应分析方法;进而提出了“子步-两步法”,以精确地模拟碰地和碰壁两种运动状态变换;最后通过与振动台试验结果对比分析,验证了刚体摇摆运动响应分析方法的可靠性。

Abstract

During an earthquake, rocking and overturning of high objects in buildings, such as cupboard, refrigerator etc., perhaps cause certain casualties and economic losses. Most of high objects are located near walls. However, the influence of colliding-to-wall is not considered in existing dynamic analysis of single-rigid-body. Colliding-to-wall would change motion pattern of single-rigid-body, which increase the overturning probability. Therefore, it’s particularly important to consider the influence of colliding-to-wall into simulating the dynamic response of single-rigid-body. With this in mind, this paper firstly adopted Lagrange's theorem to establish equations of motion. Then a dynamic analysis method of single-rigid-body is proposed based on Rosenbrock integration method. Subsequently, a multi-step-two-step method is developed to realize state transition before and after colliding to floor and wall. Finally, the reliability of the proposed dynamic analysis method is validated via comparing its results with those of shaking table tests.

关键词

偏心单刚体 / 摇摆运动 / Rosenbrock积分方法 / 地震反应

Key words

single-rigid-block / rocking motion / Rosenbrock integration method / seismic response

引用本文

导出引用
贾传果1,2,潘家富2,李建广2,马丽2. 考虑侧壁影响的偏心单刚体地震响应分析[J]. 振动与冲击, 2022, 41(8): 116-123
JIA Chuanguo1,2,PAN Jiafu2,LI Jianguang2,MA Li2. Seismic analysis of eccentric single-rigid-body considering the influence of colliding-to-wall[J]. Journal of Vibration and Shock, 2022, 41(8): 116-123

参考文献

[1] 罗珊,王武康,张恒旺.柜类家具防震设计中滑移运动数值模拟研究[J].林产工业,2016,43(12):26-30.
   Luo Shan,Wang Wukang,Zhang Hengwang. A Numberical Simulation Study on the Sliding Motion of Cabinet Furniture in Aseismatic Design[J]. China Forest Products Industry, 2016,43(12):26-30.
[2] 刘汉泉, 曲哲. 建筑内部物品滑移破坏易脆性分析中的楼面运动强度指标[J]. 世界地震工程, 2020, 36(02): 85-91.
Liu Hanquan, Qu Zhe. An intensity measure of floor motions for seismic fragility analysis of sliding contents in buildings [J], World Earthquake Engineering 2020, 36(02): 85-91.
[3] 赵子翔, 苏小卒.摇摆结构刚体模型研究综述[J]. 工程力学, 2019, 36(9): 12-24.
Zhao Zixiang, Su Xiaozu. Literature review of researches on rigid body model of rocking structure [J]. Engineering Mechanics, 2019, 36(9): 12-24.
[4]  Pompei A., Scalia A., Sumbatyan M. A. Dynamics of rigid block due to horizontal ground motion[J]. Journal of Engineering Mechanics, 1998, 124(7): 713-717.
[5] Boroschek Rubén, Romo David. Overturning criteria for non-anchored non-symmetric rigid bodies[C]. Proceeding of the 13th world conference on earthquake engineering, Vancouver, Canada. 2004.
[6] Contento Alessandro, Di Egidio Angelo. Investigations into benefits of base isolation for non-symmetric rigid blocks[J]. 2009, 38: 849-866.
[7] Wittich Christine E., Hutchinson Tara C. Shake table tests of stiff, unattached, asymmetric structures[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(14): 2425-2443.
[8] 刘小娟, 蒋欢军. 非结构构件基于性能的抗震研究进展 [J]. 地震工程与工程振动, 2013, 33(06): 53-62.
Liu Xiaojuan, Jiang Huanjun. State-of-the-art of performance-based seismic research on nonstructural components[J]. Earthquake Engineering and Engineering Vibration, 2013, 33(06): 53-62.
[9] Housner George W. The behavior of inverted pendulum structures during earthquakes[J]. Bulletin of the Seismological Society of America, 1963, 53(2): 403-417.
[10] 李建广.近断层脉冲型地震动作用下刚体块结构摇摆动力响应数值模拟和试验研究[D].重庆:重庆大学,2019
[11] Kounadis A. N. . Parametric study in rocking instability of a rigid block under harmonic ground pulse: A unified approach [J]. Soil Dynamics and Earthquake Engineering, 2013, 45(1): 125-143.
[12] 董富祥, 洪嘉振. 多体系统动力学碰撞问题研究综述 [J]. 力学进展, 2009, 39(3): 352-359.
Dong Fuxiang, Hong Jiazhen. Review of impact problem for dynamics of multibody system [J]. Advances in Mechanics, 2009, 39(3): 352-359.
[13] 姚文莉, 岳嵘. 有争议的碰撞恢复系数研究进展 [J]. 振动与冲击, 2015, 34(19): 43-48.
Yao Wenli, Yue Rong. Advance in controversial restitution coefficient study for impact problems[J]. Journal of Vibration and Shock, 2015, 34(19): 43-48.
[14] 李逸良, 邱信明, 张雄. 恢复系数的不同定义及其适用性分析 [J]. 力学与实践, 2015, 37(06): 773-777.
Li Yiliang, Qiu Xinming, Zhang Xiong. Different definitions and corresponding applicabilities of the coefficient of restitution[J]. Mechanics in Engineering, 2015, 37(06): 773-777.
[15] Bursi O S, Jia C, Vulcan L, et al. Rosenbrock-based algorithms and subcycling strategies for real-time non-linear substructure testing[J]. Earthquake Engineering and Structural Dynamics, 2011, 40(1):1-19.
[16] Mathey Charlie, Feau Cyril, Clair David, et al. Experimental and numerical analyses of variability in the responses of imperfect slender free rigid blocks under random dynamic excitations[J]. Engineering Structures, 2018, 172: 891-906.
[17] Schau Henry, Johannes M. Rocking and sliding of unanchored bodies subjected to seismic load according to conventional and nuclear rules[C]//4th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Kos Island :CMSDEE,2014.
[18] Konstantinidis Dimitrios, Makris Nicos. Experimental and analytical studies on the response of 1/4-scale models of freestanding laboratory equipment subjected to strong earthquake shaking[J]. Bulletin of Earthquake Engineering, 2010, 8(6): 1457-1477.

PDF(2167 KB)

655

Accesses

0

Citation

Detail

段落导航
相关文章

/