不同长径比柱形装药水下爆炸冲击波演化规律

马腾,王金相,刘亮涛,黄瑞源,唐奎,林尚剑,顾阳晨

振动与冲击 ›› 2022, Vol. 41 ›› Issue (8) : 149-157.

PDF(2194 KB)
PDF(2194 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (8) : 149-157.
论文

不同长径比柱形装药水下爆炸冲击波演化规律

  • 马腾,王金相,刘亮涛,黄瑞源,唐奎,林尚剑,顾阳晨
作者信息 +

Shock wave evolution of cylindrical charge with different slender ratios

  • MA Teng,WANG Jinxiang,LIU Liangtao,HUANG Ruiyuan,TANG Kui,LIN Shangjian,GU Yangchen
Author information +
文章历史 +

摘要

为分析药柱形状对水下爆炸冲击波演化的影响,针对圆柱形装药中心起爆问题,在理论上建立了炸药与水交界面上初始冲击波压力及其传播方向的二维计算方法,借助于AUTODYN有限元计算程序开展了长径比1:2-10:1的圆柱形TNT在无限水域爆炸的数值模拟,并开展了长径比为1:1和2.6:1的圆柱形TNT的水下爆炸试验。对比理论、仿真和试验结果,验证了理论模型的合理性和数值模拟的有效性,分析了柱形装药水下爆炸冲击波的传播规律,重点分析了药柱长径比对不同爆距处冲击波压力分布及传播方向的影响。结果表明:圆柱形装药水下爆炸后,冲击波波阵面逐渐从柱形趋向椭球型再趋向球型,当冲击波传播至10倍无量纲爆距时高压区的转移结束;当长径比大于1:1时,炸药轴向(端面)的冲击波压力衰减速率大于径向(圆柱面)的衰减速率,冲击波峰值压力随着方向角的增大而单调增长;在1:1-5:1的长径比和20倍无量纲爆距范围内,增大药柱长径比可定向增强炸药径向的冲击波压力,药柱的形状对冲击波压力分布影响随着爆距增大而减小。

Abstract

In order to analyze the influence of charge shape on the evolution of underwater explosion shock wave, the calculation method of initial shock wave pressure and its propagation direction on the interface between explosive and water was established in theory for the problem of center initiation of two-dimensional cylindrical charge. With the aid of AUTODYN finite element program, the tests are conducted with constant-mass cylindrical explosives with slender ratio ranging from 1:2 to 10:1. Experiments on underwater explosion of cylindrical TNT with slender ratio of 1:1 and 2.6:1 are carried out. By comparing with the result of the theoretical, simulation and experimental, the effects of the slender ratio on the propagation of the shock wave,the initial shock wave pressure and the pressure distribution in the infinite water were analyzed. The results show that the shock wave front gradually changes from cylindrical shape to ellipsoid shape and then to spherical shape for cylindrical charge exploding underwater. When the shock wave propagates to 10 times of dimensionless detonation distance, the transfer of high-pressure zone ends. When the slender ratio is greater than 1:1, the decay rate of the shock wave approach the axial (End surface) is greater than that of the radial (Cylindrical surface), and the peak pressure of shock wave changes with the direction angle. In the range of 1:1-5:1 slender ratio and 20 times dimensionless detonation distance, the radial shock wave pressure of explosive can be enhanced directionally by increasing the slender ratio of explosive, and the influence of the shape charge on shock wave pressure distribution decreases with the increase of detonation distance.

关键词

水下爆炸 / 柱形装药 / 长径比 / 冲击波波阵面 / 冲击波峰值压力 / 冲击波压力分布

Key words

Underwater Explosion / Cylindrical Charge / Slender Ratio;Shape of shock wave front / Peek pressure / Pressure distribution of shock wave

引用本文

导出引用
马腾,王金相,刘亮涛,黄瑞源,唐奎,林尚剑,顾阳晨. 不同长径比柱形装药水下爆炸冲击波演化规律[J]. 振动与冲击, 2022, 41(8): 149-157
MA Teng,WANG Jinxiang,LIU Liangtao,HUANG Ruiyuan,TANG Kui,LIN Shangjian,GU Yangchen. Shock wave evolution of cylindrical charge with different slender ratios[J]. Journal of Vibration and Shock, 2022, 41(8): 149-157

参考文献

[1] 王奕鑫,马宏昊,沈兆武. 水下爆炸中水面效应以及药包形状对冲击波的影响[J]. 中国测试, 2018,44(10):7-13.
WANG Y X, MA H H, SHEN Z W. Effect of water surface and shape of charge on shock wave in underwater explosion [J]. China Measurement and test, 2018, 44(10):7-13.(in Chinese)
[2] Hammond L. Underwater shock wave characteristics of cylindrical charges[R]. Victoria :Aeronautical and Maritime Research Laboratory, DSTO-GD-0029, 1995.
[3] 库尔. 水下爆炸[M]. 罗耀杰, 韩润泽, 官信, 等译. 北京: 国防工业出版社, 1960: 67-86.
[4] YANG C C, LI X J , ZHANG C J. Numerical study of two-dimensional cylindrical underwater explosion by a modified method of characteristics[J]. Journal of Applied Physics, 2017, 122(105903):1-9.
[5] ZHANG C J, LI X J, YANG C C. A modified method of characteristics and its application in forward and inversion simulations of underwater explosion[J]. AIP Advances, 2016, 6(075319):1-14.
[6] 钟冬望, 黄小武, 殷秀红, 等. 水下爆炸冲击波的数值模拟与试验研究[J]. 爆破, 2015, 32(4):17-20.
ZHONG D W, HUANG X W, YIN X H, et al. Numerical Simulation and Experimental Study of Underwater Explosion Shock Wave[J]. Blasting, 2015, 32(4):17-20.(in Chinese)
[7] 张弛宇, 郭锐, 刘荣忠, 等.水下爆炸柱型装药与球形装药远场等效关系[J]. 鱼雷技术, 2017, 25(1):65-70.
ZHANG C Y, GUO R, LIU R Z, et al. Equivalent Relationship between Cylindrical Charge and Spherical Charge for Underwater Explosion[J]. Torpedo Technology, 2017, 25(1):65-70.(in Chinese)
[8] 赵继波, 谭多望, 李金河, 等. TNT药柱水中爆炸近场压力轴向衰减规律[J]. 爆炸与冲击, 2008, 28(6): 539-543.
ZHAO J B, TAN D W, LI J H, et al. Axial pressure damping of cylindrical tnt charges in the near Underwater explosion field [J]. Explosion and Shock Waves, 2008, 28(6): 539–543.(in Chinese)
[9] 昝文涛, 沈兆武. 微型药柱有限水域爆炸径向压力衰减规律研究[J]. 力学与实践, 2011, 33(6):59-44.
ZAN W T, SHEN Z W. The attenuation of the radial underwater explosion pressure[J]. Mechanics and Practice, 2011, 33(6):59-44.(in Chinese)
[10] 陈恒东. 装药长度对爆炸能量分布影响的研究[J]. 广东化工, 2019, 14(46): 77-79.
Hengdong C . Study on the Influence of Charge Length on Explosion Energy Distribution[J]. Guangdong Chemical Industry, 2019, 14(46): 77-79.(in Chinese)
[11] 邓贵德, 郑津洋, 陈勇军, 等. 两种典型形状装药的近场爆炸载荷研究[J]. 解放军理工大学学报(自然科学版), 2010, 11(4):86-91.
DENG G D, ZHENG J Y ,CHEN Y J, et al. Near field blast loadings from explosion of two typically shapped charges[J]. Journal of PLA university of Science and Technology(Natural Science Edition), 2010, 11(4):86-91.(in Chinese)
[12] Sternberg H M . Underwater Detonation of Pentolite Cylinders[J]. Physics of Fluids, 1995, 30(3):761-769.
[13] 刘磊, 郭锐, 裴善报,等. 柱形装药水下爆炸远场冲击波压力峰值分布[J]. 振动与冲击, 2016, 35(17):66-70.
LIU L, GUO R, PEI S B, et al. Far-field shock wave peak pressure distribution for underwater explosion of cylindrical charges[J]. Journal of Vibration and Shock, 2016, 35(17):66-70.(in Chinese)
[14] 张宝平, 张庆明, 黄风雷. 爆轰物理学[M]. 兵器工业出版社, 2009:41-50,345-360.
[15] 王继海. 二维非定常流和激波[M]. 科学出版社, 1994:101-107.
[16] 肖秋平, 陈网桦, 贾宪振, 等. 基于AUTODYN的水下爆炸冲击波模拟研究[J]. 舰船科学技术, 2009, 31(2):39-44.
XIAO Q P, CHEN W H, JIA Z X, et al. Numerical study of underwater explosion shock wave based on AUTODYN[J]. Ship Science and Technology, 2009, 31(2):39-44.(in Chinese)
[17] 刘科种, 徐更光, 辛春亮,等. AUTODYN水下爆炸数值模拟研究[J]. 爆破, 2009, 26(3):22-25.
LIU K Z, XU G G, XIN C L, et al. Research on numerical simulation in underwater explosion by AUTODYN[J]. Blasting, 2009, 26(3):22-25.(in Chinese)
[18] 张社荣, 李宏璧, 王高辉, 等. 水下爆炸冲击波数值模拟的网格尺寸确定方法[J]. 振动与冲击, 2015, 34(8):93-100.
Zhang S R , Li H B , Wang G H , et al. A method to determine mesh size in numerical simulation of shock wave of underwater explosion[J]. Journal of Vibration and Shock, 2015, 34(8):93-100.(in Chinese)

PDF(2194 KB)

780

Accesses

0

Citation

Detail

段落导航
相关文章

/