基于时序关联分析的旋转机械故障诊断

谭帅1,马遥1,侍洪波1,常玉清2,郭磊1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (8) : 171-178.

PDF(1436 KB)
PDF(1436 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (8) : 171-178.
论文

基于时序关联分析的旋转机械故障诊断

  • 谭帅1,马遥1,侍洪波1,常玉清2,郭磊1
作者信息 +

Fault diagnosis of rotating machinery based on time-series correlation analysis

  • TAN Shuai1,MA Yao1,SHI Hongbo1,CHANG Yuqing2,GUO Lei1
Author information +
文章历史 +

摘要

随着大型旋转机械设备的广泛应用,高速旋转机械的故障诊断得到越来越多的关注。旋转机械的周期旋转特性导致信号间存在很强的时序关联关系,当故障发生时,故障特性会在旋转周期间逐渐传递。文章分析滚动轴承不同类型故障、不同损伤程度振动信号时序相关特性的差异度,提出了周期记忆神经网络(Periodization long short-term memory,P-LSTM)故障诊断方法。该方法首先提取旋转机械周期内数据特征,并利用记忆因子对特性在周期间的传递规律进行选择性遗忘,学习其周期间的时序相关特征,从而实现滚动轴承的故障诊断。最后利用滚动轴承多类故障数据对所提出方法进行性能分析和试验,验证了P-LSTM方法学习旋转机械周期间的时序相关特性的有效性,以及进行故障诊断的准确度。

Abstract

With the application of large-scale rotating machinery, more and more attention has been paid to fault diagnosis of high-speed rotating machinery. Due to the periodic rotation characteristics of rotating machinery, there is a strong temporal correlation between signals. Fault features will gradually transfer during the week of rotation. In this paper, different types of faults and different level of damages of rotating machinery were analysed, which refer to temporal association characteristics of vibration signal. Then Periodization long short-term memory (Periodization – LSTM,P-LSTM) fault diagnosis method was proposed. The method extract features from periodization data and use memory factors to forget some information that of insignificance. Finally, the performance analysis and test of the proposed method were carried out based on the multi-fault data of rolling bearings, which verified the effectiveness of p-lstm method in learning the time-series correlation characteristics of rotating machinery during the cycle, as well as the accuracy of fault diagnosis.

关键词

时序相关性 / 长短时记忆 / 滚动轴承 / 特征提取 / 故障诊断

Key words

Timing correlation / Long short-term memory / Rolling bearing / Feature extraction / Fault diagnosis

引用本文

导出引用
谭帅1,马遥1,侍洪波1,常玉清2,郭磊1. 基于时序关联分析的旋转机械故障诊断[J]. 振动与冲击, 2022, 41(8): 171-178
TAN Shuai1,MA Yao1,SHI Hongbo1,CHANG Yuqing2,GUO Lei1. Fault diagnosis of rotating machinery based on time-series correlation analysis[J]. Journal of Vibration and Shock, 2022, 41(8): 171-178

参考文献

[1]  赵怀山.基于时频分析的滚动轴承故障诊断方法研究[D].西安理工大学,2017:1-2.
ZHAO Huai-Shan. Research on rolling bearing fault diagnosis method based on time-frequency analysis [D] .Xi'an University of Technology, 2017:1-2.
[2] M. Hou and H. Shi. Stator-Winding Incipient Shorted-Turn Fault Detection for Motor System in Motorized Spindle Using Modified Interval Observers[J]. IEEE Transactions on Instrumentation and Measurement. 2021, 70:1-16.
[3] 丁承君,冯玉伯,王曼娜.基于变分模态分解与深度卷积神经网络的滚动轴承故障诊断[J].振动与冲击,2021,40(02):287-296.
DING Cheng-Jun, FENG Yu-Bo, WANG Man-Na. Rolling bearing fault diagnosis using variational mode decomposition and deep convolutional neural network [J].Vibration and Shock,2021,40(02):287-296.
[4]  吴小涛,杨锰,袁晓辉,等.基于峭度准则EEMD及改进形态滤波方法的轴承故障诊断[J].振动与冲击, 2015, 34(2): 38-44.
WU Xiao-Tao, YANG Meng, YUAN Xiao-Hui, et al. Bearing fault diagnosis using EEMD and improved morphological filtering method based on kurtosis criterion [J]. Journal of Vibration and Shock, 2015, 34 (2): 38-44.
[5]  陆宁云,孟宪锋,姜斌,赵会平.基于多信号模型和盲源分离的复合故障诊断方法[J].控制与决策,2016,31(11):1945-1952.
LU Ning-Yun, MENG Xian-Feng, JIANG Bin, ZHAO Hui-Ping. Composite fault diagnosis method based on multi-signal model and blind source separation [J]. Journal of Control and Decision ,2016,31(11):1945-1952.
[6] N. Lu, B. Jiang, X. Meng and H. Zhao. Diagnosis, Diagnosticability Analysis, and Test Point Design for Multiple Faults Based on Multisignal Modeling and Blind Source Separation[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(1):137-148.
[7] 赵小强,张青青,陈鹏,朱奇先.基于PSO-BFA和改进Alexnet的滚动轴承故障诊断方法[J].振动与冲击,2020,39(07):21-28.
ZHAO Xiao-Qiang, ZHANG Qing-Qing, CHEN Peng, ZHU Qi-Xian. Rolling bearing fault diagnosis method based on improved Alexnet and PSO-BFA [J].Journal of Vibration and Shock,2020,39(07):21-28.
[8]  李学军,褚福磊.一种基于时序分析的大型重载支承轴隐蔽部位疲劳裂纹诊断方法[J].湖南科技大学学报(自然科学版),2005(04):38-41.
LI Xue-Jun, CHU Fu-Lei. A method based on time series of diagnosing fatigue crack in ulterior place of large-scale overloaded supporting shaft [J]. Journal of Hunan University of Science and Technology (Natural Science edition),2005(04):38-41.
[9]  廖庆斌,李舜酩,辛江慧.时序多相关-经验模式分解方法及其对车辆振动信号的分析[J].南京航空航天大学学报,2007(04):465-470.
LIAO Qing-Bin, LI Shun-Ming, XIN Jiang-Hui. Multi-Correlation of Time Series and Empirical Mode Decomposition and Vibration Signal Analysis of Vehicle [J]. Journal of Nanjing University of Aeronautics and Astronautics,2007(04):465-470.
[10]  CHU F, LIANG T, CHEN C. L. P, WANG X. and MA X. Weighted Broad Learning System and Its Application in Nonlinear Industrial Process Modeling[J].IEEE Transactions on Neural Networks and Learning Systems.2019,31(08):3017-3031.
[11] Jia F, Lei Y, Lu N, et al. Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization[J]. Mechanical Systems and Signal Processing, 2018, 110: 349-367.
[12]  赵志宏,赵敬娇,魏子洋.基于BiLSTM的滚动轴承故障诊断研究[J].振动与冲击,2021,40(01):95-101.
Zhao Zhi-Hong, Zhao Jing-Jiao, Wei Zi-Yang. Rolling bearing fault diagnosis based on BiLSM network [J].Vibration and Shock,2021,40(01):95-101.
[13]  张建付,宋雨,李刚,王传洋,焦亚菲.基于长短时记忆神经网络的风电机组滚动轴承故障诊断方法[J].计算机测量与控制,2017,25(01):16-19.
ZHANG Jian-Fu, SONG Yu, LI Gang, WANG Chuan-Yang, JIAO Ya-Fei. A method of fault diagnosis for rolling bearing of wind turbines based on long short-term memory neural network [J] . Computer Measurement and Control , 2017,25 (01): 16-19.
[14]  LEI J, LIU C, JIANG D. Fault diagnosis of wind turbine based on Long Short-term memory networks[J]. Renewable Energy, 2019,133:422-432.
[15] SHI H, GUO L, TAN S and BAI X. Rolling Bearing Initial Fault Detection Using Long Short-Term Memory Recurrent Network[J]. IEEE Access,2019,7: 171559-171569.
[16]  Hochreiter S , Schmidhuber, Jürgen. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8):1735-1780.
[17] Cooley J W , Tukey J W . An Algorithm for the Machine Calculation of Complex Fourier Series[J]. Mathematics of Computation, 1965, 19(90):297-301.
[18] 葛阳,郭兰中,牛曙光,窦岩.基于t-SNE和LSTM的旋转机械剩余寿命预测[J].振动与冲击,2020,39(07):223-231+273.
Ge Yang, GUO Lan-Zhong, NIU Shu-Guang, Dou Yan. Prediction of remaining useful life based on t-SNE and LSTM for rotating machinery [J].Journal of Vibration and Shock,2020,39(07):223-231+273.
[19] Ma M, Chen X, Zhang X, Ding B, Wang S. Locally linear embedding on grassmann manifold for performance degradation assessment of bearings, IEEE Transactions on Reliability, 2017,66(2):467-477.
[20] 马富齐. 基于复数据经验模态分解和随机森林理论的风电机组多域特征故障诊断研究[D].西安理工大学,2019:31-33.
MA Fu-Qi. Research on multi-domain characteristic fault diagnosis of wind turbines based on empirical mode decomposition of complex data and random forest theory [D].Xi'an University of Technology, 2019:31-33.

PDF(1436 KB)

963

Accesses

0

Citation

Detail

段落导航
相关文章

/