针对当前无人驾驶飞行器工程研制中储箱燃油晃动频率过低与刚体频率接近且随燃油消耗而时变,影响驾驶仪固定参数陷幅滤波器设计的问题,设计并加工了极小宽深比的密集“井”型隔板,利用振动台+水平滑台组合进行了横向阶跃激励的晃动试验,并以激光多普勒测振仪获取了储箱燃油液面晃动的自由振动衰减响应,采用解析模态分解(analytical mode decomposition,AMD)与基于希尔伯特变换的自由振动分析方法对液体晃动频率及阻尼进行辨识。试验及辨识结果表明:相比于常规稀疏隔板,安装密集“井”型隔板储箱的燃油晃动基频大幅提高,且不会随着燃油液面深度变化而明显变化,晃动模态阻尼大幅增大,晃动幅度快速衰减。
Abstract
To solve the problem in the notch filter design of unmanned air vehicle caused by fuel tank sloshing frequency closed to rigid body frequency and time-varying as fuel dissipates, minimal ratio of liquid width to depth baffles with "#" profile were designed to suppress sloshing. Transverse step excitation on the fuel tank was exerted by vibration table with sliding table. Free decaying vibration response of the fuel was acquired by laser Doppler vibrometer. Sloshing frequency and damping were identified by Analytical Mode Decomposition and FREEVIB method based on Hilbert Transform. The sloshing fundamental frequency of the fuel tank with minimal ratio of liquid width to depth "#" baffles was much higher than that with sparse baffles, and wasn't varied with the depth of the fuel. The sloshing damping with "#" baffles was also much higher, resulted in the sloshing response decayed very quickly.
关键词
晃动 /
极小宽深比 /
解析模态分解 /
希尔伯特变换 /
非线性参数辨识
{{custom_keyword}} /
Key words
sloshing /
minimal ratio of liquid width to depth /
Analytical Modal Decomposition /
Hilbert Transform /
nonlinear parametric identification
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]李青,王天舒,马兴瑞. 充液航天器液体晃动和液固耦合动力学的研究与应用[J].力学进展,2012,42(4):472-418.
LI Qing,WANG Tianshu,MA Xingrui.Reviews on liquid sloshing dynamics and liquid-structure coupling dynamics in liquid-filled spacecrafts[J]. Advances in mechianics, 2012,42(4):472-418.
[2] Wang T S, Miao N, Li J F .Large-Amplitude Sloshing Analysis and Equivalent Mechanical Modeling in Spherical Tanks of Spacecraft[J]. Journal of Spacecraft and Rockets ,2016,53(3) :500-506.
[3]朱琳,唐国安,柳征勇等.推进剂与贮箱液固耦合振动的动力学分析[J].振动与冲击,2012,31(5):139-143.
ZHU Lin,TANG Guo-an,LIU Zheng-yong.Dynamic analysis for fluid-structure coupled vibration of propellants and fuel tank[J]. Journal of Vibration and Shock,2012,31(5):139-143.
[4]李遇春,刘哲,王立时. 基于多维模态方法的流体二维非线性强迫晃动分析[J].振动与冲击, 2017, 36(16): 159-165.
LI Yuchun, LIU Zhe,WANG Lishi,A multimodal-based analysis for two-dimensional fluid nonlinear forced sloshing[J]. Journal of Vibration and Shock, 2017, 36(16): 159-165.
[5]RA Ibrahim ,VN Pilipchuk , Ikeda T. Recent advances in liquid sloshing dynamics. [J] . Applied Mechanics Reviews,2001,54(2):133-199.
[6] Tang Y and Yue B Z, Simulation of Large-Amplitude Three-Dimensional Liquid Sloshing in Spherical Tanks[J] . AIAA Journal, 2017, 55(6): 2052-2059.
[7] Wang X L. Effect of Ballonet Sloshing on the Stability Characteristics of an Airship[J]. AIAA Journal, 2016, 54(1): 360-363.
[8] Turnwald A, Oehlschlägel T. Passivity-Based Control of a Cryogenic Upper Stage to Minimize Fuel Sloshing[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(11):3006-3013.
[9]王立时,李遇春,张皓.二维晃动自然频率与阻尼比系数的试验识别[J].振动与冲击,2016,35(8):173-177.
WANG Li-shi,LI Yuchun,ZHANG Hao.Experimental identification for the natural frequencies and damping ratios of two-dimensional sloshing[J].Journal of Vibration and Shock,2016,35(8):173-177.
[10]李遇春,张皓.二维晃动模态的统一Ritz计算格式[J].振动与冲击,2014,33(19):85-89.
LI Yuchun,ZHANG Hao.A unified Ritz algorithm for two-dimensional slosh modes[J].Journal of Vibration and Shock,2014,33( 19) : 85-89.
[11]王为,夏恒新,李俊峰等.半球形容器中液体自由晃动非线性现象的试验研究[J].清华大学学报( 自然科版),2008(11):9-12.
WANG Wei,XIA Hengxin,LI Junfeng etal.Experimental investigation of nonlinear liquid sloshing in a hemispherical container[J]. Journal of Tsinghua University ( science and technology) ,2008(11):9-12.
[12]李松,高芳清等.液体晃动有限元模态分析及试验研究[J].核动力工程,2007,28(4):54-57.
LI Song,GAO Fangqing.Finite element modal analysis and dynamic experimental for liquid sloshing[J]. Nuclear power engineering,2007,28(4):54-57.
[13] Chen G D,Wang Z C.A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components[J].Mechanical Systems and Signal Processing,2012( 28) : 258-279.
[14] Feldman M.A signal decomposition or lowpass filtering with Hilbert transform[J].Mechanical Systems and Signal Processing,2011,25( 8) : 3205-3208.
[15]Feldman M.Hilbert transform in vibration analysis[J].Mechanical Systems and Signal Processing, 25(2011): 735-802.
[16]Feldman M. Non-linear system vibration analysis using Hilbert Transform I. Free vibration analysis method ‘freevib’ [J]. Mechanical Systems and Signal Processing, 1994, 8(2): 119-127.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}