基于改进多重同步挤压广义S变换的结构瞬时频率识别研究

袁平平1, 2, 3,程雪莉4,王航航3,沈中祥3,任伟新5,张健4

振动与冲击 ›› 2022, Vol. 41 ›› Issue (8) : 193-198.

PDF(2000 KB)
PDF(2000 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (8) : 193-198.
论文

基于改进多重同步挤压广义S变换的结构瞬时频率识别研究

  • 袁平平1, 2, 3,程雪莉4,王航航3,沈中祥3,任伟新5,张健4
作者信息 +

A study on structural instantaneous frequency identification based on an improved multi-synchrosqueezing generalized S-transform

  • YUAN Pingping1,2,3,CHENG Xueli4,WANG Hanghang3,SHEN Zhongxiang3,REN Weixin5,ZHANG Jian4
Author information +
文章历史 +

摘要

为了改进结构瞬时频率的识别效果,本文提出一种新形式的改进广义S变换(Improved Generalized S Transform, IGST),并通过能量集中度(Concentration Measure, CM)推导了IGST窗函数的参数选择方法,最后结合同步挤压算法提出了改进多重同步挤压广义S变换(Improved Multi-synchrosqueezing Generalized S-transform, IMSSGST)。该算法的核心思想是将IGST的时频分布按一定的范围向时频脊线处进行多次同步挤压变换。数值模拟方面,采用两层剪切框架时变结构验证了该方法的准确性。实验方面,对七层钢筋混凝土(Reinforced Concrete, RC)剪力墙结构进行了瞬时频率识别,验证了该方法在实际工程中的实用性。数值模拟和实验结果表明该方法能有效改善时频分析的能量聚集性,提高瞬时频率的识别精度。

Abstract

To improve the accuracy of structural instantaneous frequency identification, this paper proposed a new form of improved generalized S-transform(IGST). The parameters selection method of window function in IGST was derived by concentration measure(CM)principle, and the improved multi-synchrosqueezing generalized S-transform(IMSSGST)was proposed combined with squeeze algorithm. The core idea of this algorithm is to perform multi-synchrosqueezing on the time-frequency distribution of IGST to the time-frequency ridge in a certain range. In terms of numerical simulation, the accuracy of the method was verified by using a time-varying structure of two-story shear frame. In the aspect of experiment, instantaneous frequency identification of a seven-story Reinforced Concrete(RC)shear wall structure was carried out, which verified the practicability of the method in practical engineering. Numerical simulation and experimental results show that this method can effectively improve energy aggregation of time-frequency analysis and accuracy of instantaneous frequency identification.
 

关键词

瞬时频率
/ 时频分析 / 同步挤压 / 改进多重同步挤压广义S变换

Key words

Instantaneous frequency
/ time-frequency analysis / synchrosqueezing / improved multi-synchrosqueezing generalized S-transform

引用本文

导出引用
袁平平1, 2, 3,程雪莉4,王航航3,沈中祥3,任伟新5,张健4. 基于改进多重同步挤压广义S变换的结构瞬时频率识别研究[J]. 振动与冲击, 2022, 41(8): 193-198
YUAN Pingping1,2,3,CHENG Xueli4,WANG Hanghang3,SHEN Zhongxiang3,REN Weixin5,ZHANG Jian4. A study on structural instantaneous frequency identification based on an improved multi-synchrosqueezing generalized S-transform[J]. Journal of Vibration and Shock, 2022, 41(8): 193-198

参考文献

[1] 朱宏平, 余璟谈, 张俊兵. 结构损伤动力检测与健康监测研究现状与展望[J]. 工程力学, 2011, 28(02): 1-11+17.
Zhu Hongping, Yu Jingtan, Zhang Junbing. A summary review and advantages of vibration-based damage identification methods in structural health monitoring[J]. Journal of Engineering Mechanics, 2011, 28(02): 1-11+17, (in Chinese)
[2] 李帅. 工程结构模态参数辨识与损伤识别方法研究[D]. 重庆大学, 2013.
Li Shuai. Studies on method for modal parameter identification and damage identification of engineering structure[D]. Chongqing University. 2012. (in Chinese)
[3] 叶锡均. 基于环境激励的大型土木工程结构模态参数识别研究[D]. 华南理工大学, 2012.
Ye Xijun. Modal parameter identification of large-scale civil engineering structure based on ambient excitation[D]. South China University of Technology. 2012. (in Chinese)
[4] Kijewski T, Kareem A. wavelet transforms for system identification in civil engineering[J]. Computer‐Aided Civil and Infrastructure Engineering, 2003, 18(5).
[5] 孙猛猛. 非平稳环境激励下高层建筑结构模态参数识别[D]. 武汉理工大学, 2019.
Sun Mengmeng. Modal parameter identification of high-rise building under non-stationary environment excitation. Wuhan University of Technology. 2019. (in Chinese)
[6] Wang Z C, Ren W-X, Chen G. Time-frequency analysis and applications in time-varying/nonlinear structural systems: A state-of-the-art review[J]. Advances in Structural Engineering, 2018, 21(10): 1562-1584.
[7] Yang Y, Peng Z, Zhang W, et al. Parameterised time-frequency analysis methods and their engineering applications: A review of recent advances[J]. Mechanical Systems and Signal Processing ,2019, 119: 182-221.
[8] 裴强, 刘小庆, 吴凯. 基于时频分析S变换的高层框架损伤识别研究[J]. 沈阳建筑大学学报(自然科学版), 2018, 34(06): 981-987.
Pei Qiang, Liu Xiaoqing, Wu Kai. Experimental study on mechanical characteristics of horizontal anchor in new tubular roof method. Journal of Shenyang Jianzhu University (Natural Science Edition), 2018, 34(06): 981-987. (in Chinese)
[9] Zidelmal Z, Hamil H, Moukadem A, et al. S-transform based on compact support kernel[J]. Digital Signal Processing, 2017, 62: 137-149.
[10] 续秀忠, 张志谊, 华宏星, 等. 应用时频分析方法辨识时变系统的模态参数[J]. 振动工程学报, 2003, (03): 104-108.
Xu Xiuzhong, Zhang Zhiyi, Hua Hongxing. Identification of modal parameters of time-varying system using time-frequency analysis method[J]. Journal of Vibration Engineering, 2003, (03): 104-108. (in Chinese)
[11] Hou Z, Hera A, Shinde A. Wavelet‐Based Structural Health Monitoring of Earthquake Excited Structures[J]. Computer‐Aided Civil and Infrastructure Engineering, 2006, 21(4).
[12] Daubechies I, Lu J, Wu H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243-261.
[13] 张志禹, 刘彦霞, 李向月. 同步挤压小波变换提取地震信号瞬时属性[J]. 计算机测量与控制, 2018, 26(10): 260-263.
Zhang Zhiyu, Liu Yanxian, Li Xiangyue. Extracting instantaneous attributes of seismic signals with synchroqueezing wavelet transform[J]. Computer Measurement and Control. 2018, 26(10): 260-263. (in Chinese)
[14] 刘景良, 任伟新, 王佐才, 等. 基于同步挤压小波变换的结构瞬时频率识别[J]. 振动与冲击, 2013, 32(18): 37-42+48.
Liu Jingliang, Ren Weixin, Wang Zuocai, et al. Instantaneous frequency identification of based on synchrosqueezing wavelet transform[J]. Journal of Vibration and Shock. 2013, 32(18): 37-42+48. (in Chinese)
[15] 刘景良, 郑锦仰, 郑文婷,等. 基于改进同步挤压小波变换识别信号瞬时频率[J]. 振动.测试与诊断, 2017, 37(04): 814-821+848. (in Chinese)
Liu Jingliang, Zhen Jinyang, Zhen Wenting, et al. Instantaneous frequency identification of siginals based on improved synchrosqueezing wavelet transform[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(04): 814-821+848. (in Chinese)
[16] Yu G, Yu M, Xu C. Synchroextracting transform[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8042-8054.
[17] 康佳星. 同步提取变换算法的改进研究及其在地震信号分析中的应用[D]. 成都理工大学, 2018.
Kang Jiaxing. Research on improved synchroextracting transform and its application in seismic signal processing[D]. ChengDu University of Technology. 2018. (in Chinese)
[18] 张文海, 胡明辉, 江志农,等. 基于同步提取变换与Vold-Kalman滤波的燃机阶次跟踪方法研究[J]. 机电工程, 2020, 37(09): 1104-1108.
Zhang Wenhai, Hu Minghui, Jiang Zhinong, et al. Order tracking method for gas turbine combined with synchro extracting transform and Vold-Kalman filtering[J]. Journal of Mechanical and Electrical Engineering. 2020, 37(09): 1104-1108. Y. (in Chinese)
[19] Li Z, Gao J, Wang Z, et al. Time-Synchroextracting General Chirplet Transform for Seismic Time-Frequency Analysis[J]. Ieee Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8626-8636.
[20] Yu G, Wang Z H, Zhao P. Multisynchrosqueezing Transform[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5441-5455.
[21] Stanković L. A measure of some time–frequency distributions concentration[J]. Signal Processing, 2001, 81(3): 621-631.
[22] Moukadem A, Bouguila Z, Ould Abdeslam D, et al. A new optimized Stockwell transform applied on synthetic and real non-stationary signals[J]. Digital Signal Processing, 2015, 46: 226-238.
[23] He K, Xiao S, Li X. Time-frequency characteristics of acoustic emission signal for monitoring of welding structural state using Stockwell transform[J]. Journal of the Acoustical Society of America, 2019, 145(1): 469-479.
[24] Panagiotou M , Restrepo José I, Conte J P . Shake-Table Test of a Full-Scale 7-Story Building Slice. Phase I: Rectangular Wall[J]. Journal of Structural Engineering, 2011, 137(6):691-704.

PDF(2000 KB)

Accesses

Citation

Detail

段落导航
相关文章

/