基于多传感器两级特征融合的滚动轴承故障诊断方法

刘仓,童靳于,包家汉,郑近德,潘海洋

振动与冲击 ›› 2022, Vol. 41 ›› Issue (8) : 199-207.

PDF(3301 KB)
PDF(3301 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (8) : 199-207.
论文

基于多传感器两级特征融合的滚动轴承故障诊断方法

  • 刘仓,童靳于,包家汉,郑近德,潘海洋
作者信息 +

A rolling bearing fault diagnosis method based on multi-sensor two-stage feature fusion

  • LIU Cang,TONG Jinyu,BAO Jiahan,ZHENG Jinde,PAN Haiyang
Author information +
文章历史 +

摘要

针对单个传感器获取信息有限导致诊断精度不足的问题,提出一种基于多传感器两级特征融合的故障诊断方法,并将其应用于不同工况下的滚动轴承故障诊断中。首先,在第一阶段特征融合中,通过变分模态分解计算每个传感器振动信号的本征模态函数(Intrinsic Mode Function,IMF),消除噪声等冗余信息;再根据IMF提取时域、频域和多尺度熵特征,在一维特征层面融合成一个多域特征集。其次,在第二阶段特征融合中,首先构建基于Swish激活函数和log(cosh)损失函数改进的深度自编码网络,在此基础上进一步融合多域特征集并进行故障分类。将所提模型应用于不同工况下的滚动轴承故障诊断数据集,试验结果表明,与现有方法相比,所提方法具有更高的分类准确率和鲁棒性。

Abstract

To address the problem of insufficient diagnostic accuracy due to the limited information obtained by a single sensor, a two-stage feature fusion fault diagnosis method based on multi-sensor is proposed and applied to the fault diagnosis of rolling bearing under different working conditions. First, the intrinsic mode function (IMF) of each sensor vibration signal is calculated by variational mode decomposition to eliminate redundant information such as noise. Then the time domain, frequency domain and multi-scale entropy features are extracted according to the IMF and fused into a multi-dimensional feature set at the one-dimensional feature level, which is the first stage of feature fusion. Second, an improved deep auto-encoder network based on the Swish activation function and log(cosh) loss function is firstly constructed, then the multi-domain feature set is further fused and fault classification is performed based on the improved deep auto-encoder network, which is the second stage of feature fusion. The proposed model is applied to the rolling bearing fault diagnosis data set under different working conditions. The experimental results show that the proposed method has higher classification accuracy and robustness compared with the existing methods.

关键词

故障诊断 / 自编码网络 / 多传感器 / 特征融合 / 滚动轴承

Key words

fault diagnosis / auto-encoder network / multi-sensor / feature fusion / rolling bearing

引用本文

导出引用
刘仓,童靳于,包家汉,郑近德,潘海洋. 基于多传感器两级特征融合的滚动轴承故障诊断方法[J]. 振动与冲击, 2022, 41(8): 199-207
LIU Cang,TONG Jinyu,BAO Jiahan,ZHENG Jinde,PAN Haiyang. A rolling bearing fault diagnosis method based on multi-sensor two-stage feature fusion[J]. Journal of Vibration and Shock, 2022, 41(8): 199-207

参考文献

[1] 雷亚国, 贾  峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5): 94-104.
LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and Challenges of Machinery Intelligent Fault Diagnosis in Big Data Era [J]. Journal of Mechanical Engineering, 2018, 54(5): 94-104.
[2] Zheng J, Pan H, Tong J, et al. Generalized refined composite multiscale fuzzy entropy and multi-cluster feature selection based intelligent fault diagnosis of rolling bearing[EB/OL]. https://doi.org/10.1016/j.isatra.2021.05.042. (2021-6-1) / (2021-9-2).
[3] 张  鑫, 赵建民, 李海平, 等. 基于NIC-DWT-WOASVM的齿轮箱混合故障诊断[J]. 振动与冲击, 2020,39(11): 146-151+164.
ZHANG Xin, ZHAO Jianmin, LI Haiping, et al. Compound fault diagnosis for gearbox based on NIC-DWT-WOASVM[J]. Shock and Vibration, 2020,39(11): 146-151+164.
[4] 周建民, 王发令, 张臣臣, 等. 基于特征优选和GA-SVM的滚动轴承智能评估方法[J]. 振动与冲击, 2021,40(04): 227-234.
ZHOU Jianmin, WANG Faling, ZHANG Chenchen, et al. An intelligent method for rolling bearing evaluation using feature optimization and GA-SVM. Shock and Vibration, 2021,40(04): 227-234.
[5] 尹  诗, 侯国莲, 胡晓东, 等. 风力发电机组发电机前轴承故障预警及辨识[J]. 仪器仪表学报, 2020, 41(05): 242-251.
YIN Shi,HOU Guolian,HU Xiaodong, et al. Fault warning and identification of front bearing of wind turbine generator[J]. Chinese Journal of Instrument, 2020,41(05): 242-251.
[6] Shao H, Lin J, Zhang L, et al. A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance[J]. Information Fusion, 2021, 74: 65-76..
[7] 俞  昆, 谭继文, 李  善. 基于多传感器信息融合的滚动轴承故障诊断研究[J]. 仪表技术与传感器, 2016(07): 97-102+107.
YU Kun, TAN Jiwen, LI Shan. Rolling Bearing Fault Diagnosis Research Based on Multi-sensor Information Fusion[J]. Instrument Technique and Sensor, 2016(07): 97-102+107.
[8] Jiang L L, Yin H K, Li X J, et al. Fault Diagnosis of Rotating Machinery Based on Multisensor Information Fusion Using SVM and Time-Domain Features[J]. Shock and Vibration, 2014, (2014-4-7), 2014, 2014(pt.2): 153-154.
[9] Su Z, Wang F, Xiao H, et al. A fault diagnosis model based on singular value manifold features, optimized SVMs and multi-sensor information fusion[J]. Measurement Science and Technology, 2020, 31(9): 095002.
[10] Gao G, Zhang Y, Zhu Y, et al. Data Fusion and Multi-fault Classification Based On Support Vector Machines[C]// Proceedings of the 2006 Joint Conference on Information Sciences, JCIS 2006, Kaohsiung, Taiwan, ROC, October 8-11, 2006. DBLP, 2006.
[11] 李益兵, 黄定洪, 马建波, 等. 基于深度置信网络与信息融合的齿轮故障诊断方法[J]. 振动与冲击, 2021, 40(08): 62-69.
LI Yibing, HUANG Dinghong, MA Jianbo, et al. A gear fault diagnosis method based on deep belief network and information fusion[J]. Shock and Vibration. 2021, 40(08): 62-69.
[12] 赵  靖, 廖英英, 杨绍普, 等. 基于无迹卡尔曼滤波的动态贝叶斯小波变换在轴承故障诊断中的应用[J]. 振动与冲击, 2020, 39(11): 53-62.
ZHAO Jing, LIAO Yingying, YANG Shaopu, et al. An extension of unscented Kalman filter to dynamic Bayesian wavelet transform in fault diagnosis of rolling element bearings[J]. Shock and Vibration, 2020, 39(11): 53-62.
[13] Wood N B, L'Ecuyer T S, Heymsfield A J, et al. Estimating snow microphysical properties using collocated multisensor observations[J]. Journal of geophysical research: Atmospheres, 2014, 119(14): 8941-8961.
[14] 徐冬芳, 邓飞其. 基于多传感器数据融合的智能故障诊断系统[J]. 仪器仪表学报, 2004(S1): 404-406.
XU Dongfang, DENG Feiqi. Artificial Fault Diagnosis System Based on Data Fusion Algorithm[J]. Chinese Journal of Instrument, 2004(S1): 404-406.
[15] Jing L, Wang T, Zhao M, et al. An adaptive multi-sensor data fusion method based on deep convolutional neural networks for fault diagnosis of planetary gearbox[J]. Sensors, 2017, 17(2): 414.
[16] CHEN Z, LI W. Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1693-1702.
[17] LI S, WANG H, SONG L, et al. An adaptive data fusion strategy for fault diagnosis based on the convolutional neural network[J]. Measurement, 2020, 165: 108122.
[18] Tao, Jie, Liu, et al. Bearing Fault Diagnosis Based on Deep Belief Network and Multisensor Information Fusion.[J]. Shock and Vibration, 2016:1-9.
[19] Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
[20] Dibaj A, Ettefagh M M, Hassannejad R, et al. A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults[J]. Expert Systems with Applications, 2021, 167: 114094.
[21] Tong J, Luo J, Pan H, et al. A Novel Cuckoo Search Optimized Deep Auto-Encoder Network-Based Fault Diagnosis Method for Rolling Bearing[J]. Shock and Vibration, 2020, 2020(7): 1-12.
[22] 郑近德, 程军圣, 胡思宇. 多尺度熵在转子故障诊断中的应用[J]. 振动.测试与诊断, 2013, 033(002): 294-297.
ZHENG Jinde, CHENG Junsheng, HU Siyu. Application of Multi-scale Entropy In Rotor Fault Diagnosis[J]. Journal of Vibiation Meamurement and Diagnosis, 2013, 033(002): 294-297.
[23] 邵海东, 张笑阳, 程军圣, 等. 基于提升深度迁移自动编码器的轴承智能故障诊断[J]. 机械工程学报, 2020, 56(9): 84-90.
SHAO Haidong, ZHANG Xiaoyang, CHENG Junsheng, et al. Intelligent Fault Diagnosis of Bearing Using Enhanced Deep
Transfer Auto-encoder[J]. Journal of Mechanical Engineering, 2020, 56(9): 84-90.
[24] Ramachandran P, Zoph B, Le Q V. Searching for activation functions[EB/OL]. https://arxiv.org/abs/1710.05941. (2017-10-27) / (2021-9-2).
[25] Zhu H, Long M, Wang J, et al. Deep hashing network for efficient similarity retrieval[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2016, 30(1).
[26] Shao H, Xia M, Wan J, et al. Modified Stacked Auto-encoder Using Adaptive Morlet Wavelet for Intelligent Fault Diagnosis of Rotating Machinery[J]. IEEE/ASME Transactions on Mechatronics, 2021, PP(99): 1-1.
[27] Ahmedk A, Aljahdali S, Hussain S N. Comparative Prediction Performance with Support Vector Machine and Random Forest Classification Techniques[J]. International Journal of Computer Applications, 2014, 69(11): 12-16.
[28] Laurens V D M, Hinton G. Visualizing Data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(2605): 2579-2605.

PDF(3301 KB)

956

Accesses

0

Citation

Detail

段落导航
相关文章

/