受人体脊柱负重减振作用的生物学启发,设计了一种多层节状连接仿生隔振器,分析了不同设计参数对隔振器静态刚度和承载能力的影响,由拉格朗日动力学公式建立了隔振系统动力学方程,利用谐波平衡法对动力学方程进行求解,分析了不同设计参数对隔振器位移传递率的影响,通过四阶龙格库塔法求出数值解并与谐波平衡法的解析解进行对比,验证了论文结论的正确性。研究结果表明:隔振器静态刚度具有明显非线性特性,通过设计参数的调节可以使隔振器在工作范围内获得正刚度、零刚度或负刚度;满足正刚度条件时降低刚度比、增加初始角度可以提高隔振器承载能力;改变隔振器设计参数如增加层数,减小初始角度,降低刚度比可以显著降低隔振器位移传递率。研究结果对仿脊柱隔振器的工程应用具有指导意义。
Abstract
Inspired by the biological effect of human spine load-bearing and shock absorption, a bionic vibration isolator with multi-layer nodal connection is designed, the static model of the isolator is established The influence of different design parameters on the static stiffness and bearing capacity of the isolator is analyzed. The system dynamic equation is established by Lagrange dynamic formula, and the system is solved by harmonic balance method. The influence of different structural parameters on the displacement transmissibility of the system is analyzed, The validity of the harmonic balance method is verified by comparing the numerical solution obtained by the fourth-order Runge Kutta method with the analytical solution of the harmonic balance method. The results show that: The static stiffness of the isolator has obvious nonlinear characteristics. The positive stiffness, zero stiffness or negative stiffness can be obtained in the working range by adjusting the design parameters; when the positive stiffness condition is satisfied, reducing the stiffness ratio and increasing the initial angle can improve the bearing capacity of the isolator By adjusting the design parameters of the vibration isolator such as reducing the initial angle and reducing the stiffness ratio can significantly reduce the displacement transmissibility of the system, the research results have guiding significance for the engineering application of the bionic spinal vibration isolator.
关键词
隔振器 /
仿生结构 /
谐波平衡法
{{custom_keyword}} /
Key words
vibration isolator /
bionic structure /
harmonic balance method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SUN X, JING X, XU J, et al. Vibration isolation via a scissor-like structured platform[J]. Journal of Sound and Vibration, 2014,333:2404-2420.
[2] CARRELLA A, BRENNAN M, WATERS T, et al. Optimization of a Quasi-Zero-Stiffness Isolator[J]. Journal of Mechanical Science and Technology, 2007, 21: 946-949.
[3] 徐道临, 张月英, 周加喜. 一种准零刚度隔振器的特性分析与实验研究[J]. 振动与冲击, 2014, 11: 208-213.
XU Daolin, ZHANG Yueying, ZHOU Jiaxi, et al. Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness[J]. Journal of Vibration and Shock, 2014, 11: 208-213.
[4] 刘兴天, 张志谊, 华宏星. 新型低频隔振器的特性研究[J]. 振动与冲击, 2012, 05: 161-164.
LIU Xingtian, ZHANG Zhiyi, HUA Hongxing. Characteristics of a novel low-frequency isolator[J]. Journal of Vibration and Shock, 2012, 05: 161-164.
[5] LAN C, YANG S, WU Y, et al. Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads[J]. Journal of Sound and Vibration, 2014, 333: 4843-4858.
[6] CARRELLA A, BRENNAN M, WATERS T. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2007, 301: 678-689.
[7] WU Z, JING X, BIAN J, et al. Vibration isolation by exploring bio-inspired structural nonlinearity[J]. Bioinspiration. Biomimetics, 2015, 10: 056015.
[8] YAN G, WANG S, ZOU H, et al. Bio-inspired polygonal skeleton structure for vibration isolation: Design, modelling, and experiment[J]. Science China-Technological Sciences, 10.1007/s11431-020-1568-8.
[9] DAI H, JING X, WANG Y, et al. Post capture vibration suppression of spacecraft via a bio-inspired isolation system[J]. Mechanical Systems and Signal Processing, 2018, 105: 214-240.
[10] JING X, ZHANG L, FENG X, et al. A novel bio-inspired anti-vibration structure for operating hand-held jackhammers[J]. Mechanical Systems and Signal Processing, 2019, 118: 317-339.
[11] DENG T, WEN G, DING H, et al. A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck[J]. Mechanical Systems and Signal Processing, 2020, 145: 106967.
[12] 王鑫, 岳晓奎, 代洪华. 在轨服务中的仿生抗冲击结构研究[J].宇航学报,2020,08: 1000-1007.
WANG Xin, YUE Xiaokui, DAI Honghua. Research on bio-inspired anti-impact structure in on-orbit servicing[J]. Journal of Astronautics, 2020, 08: 1000-1007.
[13] YAN G, ZOU H, WANG S, et al. Large stroke quasi-zero stiffness vibration isolator using three-link mechanism[J]. Journal of Sound and Vibration, 2020, 478: 115344.
[14] DETROUX.T, RENSON.L, MASSET.L , et al. The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems[J]. Computer methods in applied mechanics and engineering, 2015, 296: 18-38.
[15] HU H, TANG J. Solution of a doffing-harmonic oscillator by the method of harmonic balance[J]. Journal of Sound and Vibration, 2006, 294: 637-639.
[16] LIU Y, XU L, SONG C, et al. Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping[J]. Archive of Applied Mechanics, 2019, 89: 1743-1759.
[17] CHANG Y, ZHOU J, WANG K, et al. A quasi-zero-stiffness dynamic vibration absorber[J]. Journal of Sound and Vibration, 2021, 494: 115859.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}