声子晶体作为一种具有超材料特性的复合减振材料,其带隙范围的计算一直是研究的重点,目前主要的计算方法都是数值方法,得到的带隙范围依赖于系统参数的选取,而带隙的设计只能采取参数试凑或优化的方法。针对以上问题,根据局域共振型声子晶体薄板的动力学方程,得到系统振动位移的解析解。在此基础上,得到了阻抗表达式,并根据阻抗的概念阐述了带隙的形成机理,讨论了系统阻尼对带隙的影响,得到了无阻尼条件下带隙的解析解,所得结果与有限元及平面波展开法的计算结果一致。利用带隙解析解,可以非常方便地设计局域共振声子晶体薄板的带隙,为声子晶体的研究和应用提供了全新的方法。
Abstract
Phononic crystal is a kind of composite vibration-reduction material with metamaterial characteristics, and its band gap calculation has always been a hot research topic. At present, the main calculation methods are numerical methods. The band gap range depends on system parameters selection. Band gap design can only adopt parameter trial and error or optimization methods. For the above problems, the analytical solution of system vibration displacement was obtained according to the dynamic equation of locally resonance phononic crystal(LR PC) thin plate. On this basis, according to impedance concept, band gap formation mechanism was explained, system damping influence on the band gap was discussed, and band gap analytical solution under undamped conditions was obtained, which were consistent with finite element method and plane wave expansion method. Using this band gap analytical solution, designing band gap of LR PC thin plate can be convenient, which provides a new method for phononic crystal research and application.
关键词
声子晶体薄板 /
局域共振 /
带隙解析解
{{custom_keyword}} /
Key words
phononic crystal thin plate /
locally resonant /
band gap analytical solution
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LIU Zheng-you, ZHANG Xi-xiang, MAO Yi-wei, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736.
[2] KHELIF A, ADIBI A. Phononic Crystals[M]. Berlin, Germany: Springer, 2015.
[3] YI G, YOUN B D. A comprehensive survey on topology opti-mization of phononic crystals[J]. Structural and Multidis-ciplinary Optimization, 2016, 54(5): 1315-1344.
[4] TANAKA Y, TOMOYASU Y, TAMURA S. Band structure of acoustic waves in phononic lattices: Two-dimensional com-posites with large acoustic mismatch[J]. Physical Review B, 2000, 62(11): 7387-7392.
[5] ZHAO Y, LI H, LUO W, et al. Finite difference time domain analysis of two-dimensional piezoelectric phononic crystals[C]. 2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA). IEEE, 2012: 1-4.
[6] KAFESAKI M, ECONOMOU E N. Multiple-scattering theory for three-dimensional periodic acoustic composites[J]. Physical review B, 1999, 60(17): 11993-12001.
[7] LIU W, CHEN J, LIU Y, et al. Effect of interface/surface stress on the elastic wave band structure of two-dimensional phononic crystals[J]. Physics Letters A, 2012, 376(4): 605-609.
[8] VERES I A, BERER T, MATSUDA O. Complex band structures of two dimensional phononic crystals: Analysis by the finite element method[J]. Journal of Applied Physics, 2013, 114(8): 083519-083529.
[9] DONG H W, SU X X, WANG Y S. Multi-objective optimization of two-dimensional porous phononic crystals[J]. Journal of Physics D: Applied Physics, 2014, 47(15): 155301-15311.
[10] VATANABE S L, PAULINO G H, SILVA E C N. Maximizing phononic band gaps in piezocomposite materials by means of topology optimization[J]. The Journal of the Acoustical Society of America, 2014, 136(2): 494-501.
[11] SIGALAS M M. Elastic wave band gaps and defect states in two-dimensional composites[J]. The Journal of the Acoustical Society of America, 1997, 101(3): 1256-1261.
[12] VASSEUR J O, DEYMIER P A, FRANTZISKONIS G, et al. Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media[J]. Journal of Physics: Condensed Matter, 1998, 10(27): 6051-6064.
[13] XIE Long-xiang, XIA Bai-zhan, LIU Jian, et al. An improved fast plane wave expansion method for topology optimization of phononic crystals[J]. International Journal of Mechanical Sciences,2017,120:171-181.
[14] LI E, HE Z C, WANG G. An exact solution to compute the band gap in phononic crystals[J]. Computational Materials Science, 2016,122:75-85.
[15] XIAO Yong, WEN Ji-hong, WEN Xi-sen. Flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators[J]. Journal of Physics D: Applied Physics, 2012,45(19):195401-195412.
[16] LI E, HE Z C, WANG G, et al. An ultra-accurate numerical method in the design of liquid phononic crystals with hard inclusion[J]. computational mechanics, 2017, 60(6): 983-996.
[17] YAO Ling-yun, HUANG Guo-liang, CHEN Hui, et al. A modified smoothed finite element method (M-SFEM) for analyzing the band gap in phononic crystals[J]. Acta Mechanica, 2019, 230(6): 2279-2293.
[18] YAO Ling-yun, XU Jiang-hao, JIANG Guo-qi, et al. Band structure calculation of 2D fluid/solid and solid/fluid phononic crystal using a modified smoothed finite element method with fluid–solid interaction[J]. Ultrasonics, 2020, 110: 106267.
[19] QIAN Deng-hui, WU Jing-hong, HE Fei-yang. Electromechan-ical coupling band gaps of a piezoelectric phononic crystal Timoshenko nanobeam with surface effects[J]. Ultrasonics, 2020, 109: 106225.
[20] 朱学治,刘潇翔,焦映厚,等.用于含阻尼薄板结构减振的分布式动力吸振器的优化方法研究[J].振动与冲击,2019,38 (11) :75-79+100.
ZHU Xue-zhi, LIU Xiao-xiang, JIAO Ying-hou, et al. Optimi-zation method for distributed dynamic vibration absorbers applied in vibration reduction of damped thin plate structures [J]. Journal of vibration and shock. 2019, 38(11): 75-79+100.
[21] 陈凯伦.局域共振型板的低频减振特性研究[D].上海:华东理工大学,2020.
CHEN Kai-lun. Research on low-frequency vibration reduction characteristics of locally resonant plate[D]. Shanghai:East China University of Science and Technology.2020.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}