高速磁浮列车是新型高速交通工具,具有良好应用前景,逐渐成为研究热点。列车过桥墩时,由于桥梁此处竖向刚度远大于其他位置,列车与桥梁之间存在冲击相互作用,对磁浮控制非常不利,甚至影响运行安全性。为了研究该耦合振动,本文提出了高速磁浮列车-桥梁耦合振动实时混合试验。本文首先阐述了方法原理与流程,然后建立试验系统数值仿真模型,开展了数值仿真分析。研究表明,混合试验模拟结果精度较好,高速磁浮列车的车桥耦合实时混合试验具有可行性;不过,准确复现冲击相互作用对加载系统的动力性能要求较高,仍然存在较大困难。研究结果可为车桥耦合实时混合试验的实施提供一定参考。
Abstract
High-speed maglev train is a new and promising type of high-speed transportation, and has gradually become a research hotspot. When the train passes a bridge pier, owing to the pier vertical stiffness far greater than other bridge sections, there is an impact interaction between the train and the bridge. This impact is very unfavorable to the suspension control and even affects the operational safety. In order to study the coupling vibration, a real-time hybrid test for this coupling vibration between a high-speed maglev train and a bridge is proposed in this paper. This paper first describes the principle and flow diagram of this method, and then establishes a numerical simulation model of the test system, and carries out numerical simulation analysis. The studies show that the simulation results of hybrid test are fairly good as a whole, and the real-time hybrid test for high-speed maglev train-bridge coupling vibration is feasible; however, it is still difficult to accurately reproduce the impact interaction, which requires demanding dynamic performance of the loading system. The study results can provide some reference for the implementation of real-time hybrid test for train-bridge coupling vibration.
关键词
高速磁浮列车 /
实时混合试验 /
耦合振动 /
试验仿真 /
时滞补偿
{{custom_keyword}} /
Key words
high-speed maglev train /
real-time hybrid test /
coupling vibration /
test simulation /
time delay compensation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 梁鑫. 磁浮列车车轨耦合振动分析及试验研究[D]. 西南交通大学,成都,2015.
Liang Xin. Study on maglev vehicle/guideway coupled vibration and experiment on test rig for a levitation stock[D]. Southwest Jiaotong University, Chengdu, 2015.
[2] Cai Y, Chen S S. Vehicle/guideway dynamic interaction in maglev systems[J]. Journal of Dynamic Systems, 1996, 118(3): 526-530.
[3] Lee J S, Kwon S D, Kim M Y, et al. A parametric study on the dynamics of urban transit maglev vehicle running on flexible guideway bridges. Journal of Sound and Vibration, 2009, 328: 301-317.
[4] Min D J, Jung M R, Kim M Y. Dynamic interaction analysis of maglev-guideway system based on a 3D full vehicle model[J]. International Journal of Structural Stability and Dynamics, 2016, 16(10): 1750006.
[5] 邱法维,钱稼茹. 结构在多维多点地震输入下的拟动力实验方法[J]. 土木工程学报,1999,32(5):28-34.
Qiu Fawei, Qian Jiaru. A pseudodynamic test method for multi-dimensional and multiple excitation[J], China Civil Engineering Journal, 1999, 32(5): 28-34.
[6] Horiuchi T, Inoue M, Konno T. Development of a real-time hybrid experimental system using a shaking table[C]. Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, New Zealand, 2000.
[7] Wu B, Deng L X, Yang X D. Stability of central difference method for dynamic real-time substructure testing[J]. Earthquake Engineering and Structural Dynamics, 2009, 38: 1649-1663.
[8] 山口辉也(日). 模拟编组车辆运行的HILS系统的精度验证[J]. 国外铁道车辆,2016,53(6):32-37.
Yamaguchi H. Quantitative Verification of the HILS System Simulating Train Vehicle Behavior[J]. Foreign Rolling Stock, 2016, 53(6): 32-37.
[9] 张博,周惠蒙,邵晓芸,等. 基于鲁棒线性二次高斯的自适应时滞补偿在车桥耦合系统中应用[J]. 地震工程与工程振动,2020,40(5):1-7.
Zhang Bo, Zhou Huimeng, Shao Xiaoyun, et al. Application of adaptive time delay compensation combined with robust linear quadratic gauss in vehicle-bridge coupling real-time hybrid simulation[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(5): 1-7.
[10] Zhao C F, Zhai W M. Maglev vehicle-guideway vertical random response and ride quality[J]. Vehicle System Dynamics, 2002, 38(2): 185-210.
[11] 滕延锋. 高速磁浮轨道梁在车辆荷载作用下的振动研究[D]. 上海交通大学,上海,2008.
Teng Yanfeng. The study of vibration of high speed maglev guideway interacting with vehicle[D]. Shanghai Jiao Tong University, Shanghai, 2008.
[12] Wang Z L, Xu Y L, Li G Q, et al. Dynamic analysis of a coupled system of high-speed maglev train and curved viaduct[J]. International Journal of Structural Stability and Dynamics, 2018, 18(11): 1850143.
[13] Xu Y L, Wang Z L, Li G Q, et al. High-speed running maglev trains interacting with elastic transitional viaducts[J]. Engineering Structures, 2019, 183: 562-578.
[14] Yau J D. Response of a maglev vehicle moving on a two-span flexible guideway[J]. Journal of Mechanics, 2010, 26(1): 95-103.
[15] 杨志东. 液压振动台振动环境模拟的控制技术[D]. 哈尔滨工业大学,哈尔滨,2009.
Yang Zhidong. Research on control technologies of simulation of vibration environment using hydraulic vibration table[D]. Harbin Institute of Technology, Harbin, 2009.
[16] 韩俊伟,于丽明,赵慧. 地震模拟振动台三状态控制的研究[J]. 哈尔滨工业大学学报,1999,31(3):21-23.
Han Junwei, Yu Liming, Zhao Hui. Research on three state control of seismic simulation shaking table[J]. Journal of Harbin Institute of Technology, 1999, 31(3): 21-23.
[17] Wang Z, Yan X Q, Ning X Z, et al. Test verification of two-stage adaptive delay compensation method for real-time hybrid simulation[J]. Shock and Vibration, 2020, 7848421.
[18] 李宁,周陈,周子豪,等. 二阶段在线迭代时滞补偿方法及试验验证[J]. 振动与冲击,2020,39(17):31-38.
Li Ning, Zhou Chen, Zhou Zihao, et al. A two-stage online iteration time-delay compensation method for real time hybrid testing: simulation and test verification[J]. Journal of Vibration and Shock, 2020, 39(17): 31-38.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}