分数阶Brusselator振子的簇发振动与分岔

王艳丽1,李向红1,2,3,王敏2,申永军1,3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (8) : 304-310.

PDF(1529 KB)
PDF(1529 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (8) : 304-310.
论文

分数阶Brusselator振子的簇发振动与分岔

  • 王艳丽1,李向红1,2,3,王敏2,申永军1,3
作者信息 +

Cluster vibration and bifurcation of a fractional-order Brusselator oscillator

  • WANG Yanli1, LI Xianghong1, 2, 3, WANG Min2, SHEN Yongjun1,3
Author information +
文章历史 +

摘要

由于催化剂的存在,Brusselator振子是典型的多尺度耦合系统,即常常存在激发态和沉寂态耦合的簇发振动行为。本文考虑分数阶Brusselator系统的催化过程受到外部周期扰动下的情形,这使得系统的非线性行为更加复杂。根据分数阶系统稳定性理论进行了双参数分岔分析,讨论了Hopf分岔的充分条件。发现系统存在一条奇线,利用中心流形定理和数值模拟验证了该奇线的稳定性。探讨了分数阶阶次对簇发振动的影响,通过分数阶阶次与慢变参数的双参数分岔图,发现分数阶阶次与激发态时间长短密切相关,即降低分数阶阶次,可以缩短激发态时间,从而增加沉寂态的时间。研究还发现扰动幅值的变化直接影响快子系统的吸引子类型,激励幅值较大时,快子系统涉及到两种吸引子,沉寂态和激发态并存;激励幅值较小时快子系统涉及一种吸引子,沉寂态基本消失。

Abstract

The Brusselator oscillator is a typical multi-scale coupling system because of catalyst, which will lead to cluster vibration behavior, characterized by spiking state coupled with quiescence state. In this paper, we consider the fractional-order Brusselator system under external periodic disturbance, and the nonlinear behaviors of the system are more complex. Based on the stability theory of fractional order system, the two-parameter bifurcation analysis is carried out, and the sufficient conditions of Hopf bifurcation are discussed. It is found that there is a singular line in the system, and its stability is verified by using the center manifold theorem and numerical simulation. The influence of different fractional orders on cluster vibration is discussed. Through the two-parameter bifurcation diagram with respect to fractional order and slowly varying parameters, it is found that the fractional order is closely related to the time of the spiking state. That is to say, reducing the fractional order of the system can shorten the time of the spiking state and increase the time of the quiescence state. It is also found that the variation of disturbance amplitude directly affects the type of attractor of the fast subsystem. When the excitation amplitude is large, two kinds of attractors are involved in the fast subsystem, the quiescence state and the spiking state coexist. When the excitation amplitude is small, the fast subsystem involves one kind of attractor, then the quiescence state disappears.

关键词

Brusselator振子 / 簇发振动 / 分数阶系统 / 快慢分析法

引用本文

导出引用
王艳丽1,李向红1,2,3,王敏2,申永军1,3. 分数阶Brusselator振子的簇发振动与分岔[J]. 振动与冲击, 2022, 41(8): 304-310
WANG Yanli1, LI Xianghong1, 2, 3, WANG Min2, SHEN Yongjun1,3. Cluster vibration and bifurcation of a fractional-order Brusselator oscillator[J]. Journal of Vibration and Shock, 2022, 41(8): 304-310

参考文献

[1] SURANA A, HALLER G. Ghost manifolds in slow–fast systems, with applications to unsteady fluid flow separation [J]. Physica D: Nonlinear Phenomena, 2008, 237(10): 1507-1529.
[2] WANG Qingyun, CHEN Guanrong, PERC M. Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling [J]. PLoS ONE, 2017, 6(1): e15851.
[3] DUAN Lixia, FAN Denggui, LU Qishao. Hopf bifurcation and bursting synchronization in an excitable system with chemical delayed coupling [J]. Cognitive Neuro dynamics, 2013, 7(4): 341-349.
[4] SHI Min, WANG Zaihua. Abundant bursting patterns of a fractional-order Morris–Lecar neuron model [J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(6): 1956-1969.
[5] ZHANG Zhengdi, LIU Binbin, BI Qinsheng. Non-smooth bifurcations on the bursting oscillations in a dynamic system with two timescales [J]. Nonlinear Dynamics, 2015, 79(1): 195-203.
[6] LI Xianghong, BI Qinsheng. Bursting oscillation in CO oxidation with small excitation and the enveloping slow-fast analysis method [J]. Chinese Physics B, 2012, 21(6): 060505.
[7] KOUAYEP R M, TALLA A F, MBE J H T, et al. Bursting oscillations in Colpitts oscillator and application in optoelectronics for the generation of complex optical signals [J]. Optical and Quantum Electronics, 2020, 52(6): 291.
[8] HERVE S, DOMGUIA U S, DUTT J K, et al. Analysis of vibration of pendulum arm under bursting oscillation excitation [J]. Pramana, 2019, 92(1): 3.
[9] SUN Hongguang, ZHANG Yong, BALEANU D, et al. A new collection of real-world applications of fractional calculus in science and engineering [J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 64(1): 213-231.
[10] 王军,申永军,杨绍普,等. 一类分数阶分段光滑系统的非线性振动特性[J]. 振动与冲击, 2019,38(22):216-223.
WANG Jun, SHEN Yongjun, YANG Shaopu. Nonlinear vibration performance of a piecewise smooth system with fractional-order derivative [J]. Journal of vibration and shock, 2019,38(22):216-223.
[11] 牛江川,申永军,杨绍普,等. 基于速度反馈分数阶PID控制的达芬振子的主共振[J].力学学报, 2016, 48(02): 422-429.
NIU Jiangchuan, SHEN Yongjun, YANG Shaopu, et al. Primary resonance of Duffing oscillator with fractional-order PID controller based on velocity feedback [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(02): 422-429.
[12] 韦鹏,申永军,杨绍普.分数阶van der Pol振子的超谐共振[J].物理学报,2014,63(01):47-58.
WEI Peng, SHEN Yongjun, YANG Shaopu. Superharmonic resonance of fractional van der Pol oscillator [J]. Acta physica Sinica, 2014, 63(01): 47-58.
[13] XU Yao, YU Jintong, LI Wenxue, et al. Global asymptotic stability of fractional-order competitive neural networks with multiple time-varying-delay links [J]. Applied Mathematics and Computation, 2020, 389(4): 125498.
[14] KANDASAMY U, RAKKIYAPPAN R, CAO Jinde, et al. Mittag-Leffler stability analysis of multiple equilibrium points in impulsive fractional-order quaternion-valued neural networks [J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(2): 234-246.
[15] SEKERCI Y. Climate change effects on fractional order prey-predator model [J]. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, 2020, 134(6879): 109690.
[16] SILVA J G D, RIBEIRO A C O, CAMARGO R F, et al. Stability analysis and numerical simulations via fractional calculus for tumor dormancy models [J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 72(1): 528-543.
[17] PRIGOGINE I, LEFEVER R, GOLDBETER A, et al. Symmetry breaking instabilities in biological systems [J]. Journal of Chemical Physics, 1968, 48(4): 1695-1700.
[18] LLIBRE J, VALLS C. Global qualitative dynamics of the Brusselator system [J]. Mathematics and Computers in Simulation, 2020,170(1): 107-114.
[19] LI Yan. Hopf bifurcations in general systems of Brusselator type [J]. Nonlinear Analysis: Real World Applications, 2016,28(1): 32-47.
[20] DIAZ H O, RAMIREZ A E, FLORES R A, et al. Amplitude Death Induced by Intrinsic Noise in a System of Three Coupled Stochastic Brusselators [J]. Journal of Computational and Nonlinear Dynamics, 2019,14(4):041004.
[21] DAI Qionglin, LIU Danna, CHENG Hongyan, et al. Two-frequency chimera state in a ring of nonlocally coupled Brusselators [J]. PloS one, 2017,12(10): e0187067.
[22] MA Ruyun, ZHAO Zhongzi. Bifurcation Behaviors of Steady-State Solution to a Discrete General Brusselator Model [J]. Discrete Dynamics in Nature and Society, 2020, 2020: 5417218.
[23] DENG Qiqi, ZHOU Tianshou. Memory-Induced Bifurcation and Oscillations in the Chemical Brusselator Model [J]. International Journal of Bifurcation and Chaos, 2020, 30(10): 14.
[24] KOLINICHENKO A, RYASHKO L. Multistability and Stochastic Phenomena in the Distributed Brusselator Model [J]. Journal of Computational and Nonlinear Dynamics, 2020, 15(1): 011007.
[25] RECH P C. Multistability in a Periodically Forced Brusselator [J]. Brazilian Journal of Physics, 2020, 51(1): 1-4.
[26] CAPONE F, LUCA R D, TORCICOLLO I. Influence of diffusion on the stability of a full Brusselator model [J]. Rendiconti Lincei Matematica E Applicazioni, 2018, 29(4):661-678.
[27] WANG Yihong, LI Changpin. Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle? [J]. Physics Letters A, 2006,363(5): 414-419.
[28] JENA R M, CHAKRAVERTY S, REZAZADEH H, et al. On the solution of time‐fractional dynamical model of Brusselator reaction‐diffusion system arising in chemical reactions [J]. Mathematical Methods in the Applied Sciences, 2020, 43(7): 3903-3913.
[29] LI Xiang, WU Ranchao. Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system [J]. Nonlinear Dynamics, 2014,78(1): 279-288.
[30] MATIGNON D. Stability results for fractional differential equations with applications to control processing [J]. Computational Engineering in Systems Applications, 1996, 2(2): 963—968.

PDF(1529 KB)

Accesses

Citation

Detail

段落导航
相关文章

/