稳定板对带式输送机边主梁斜拉桥涡振性能影响机理的研究

李春光,颜虎斌,梁爱鸿,韩艳,周旭辉

振动与冲击 ›› 2022, Vol. 41 ›› Issue (8) : 34-44.

PDF(2260 KB)
PDF(2260 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (8) : 34-44.
论文

稳定板对带式输送机边主梁斜拉桥涡振性能影响机理的研究

  • 李春光,颜虎斌,梁爱鸿,韩艳,周旭辉
作者信息 +

Mechanism study on the effect of a stabilizing plate on vortex induced vibration performance of a cable stayed bridge with a side main girder of a belt conveyor

  • LI Chunguang,YAN Hubin,LIANG Aihong,HAN Yan,ZHOU Xuhui
Author information +
文章历史 +

摘要

为研究稳定板对桥面安装带式输送机的边主梁斜拉桥涡振(vortex induced  vibration ,VIV)性能影响的机理,通过节段模型测压试验获取边主梁表面压力时程,综合对比分析了不同稳定板工况下断面脉动压力系数均值、标准差、功率谱、局部与总体气动力的相关性,揭示了下稳定板对边主梁桥的抑振机理。研究发现:该类型主梁竖弯涡激共振发生的原因是上表面前部分离与再附区域强烈的压力脉动,下表面前部气动力与总体气动力的强相关性以及后部具有明显相关性的强烈的压力脉动。梁底布置一道稳定板能显著降低断面压力脉动,布置两道稳定板断面压力脉动进一步降低,从而可以大幅抑制涡振;梁底布置三道稳定板促进了气流在下游风嘴处的再附,断面压力脉动被大幅削弱,局部气动力与总体气动力相关性被显著破坏,从而有效抑制涡振。

Abstract

In order to study the mechanism of the effect of stabilizing plate on vortex induced  vibration (VIV) performance of side girder cable-stayed bridge with belt conveyor installed on bridge deck, the pressure time-histories date of the edge girder was obtained through the section model pressure test. The mean value of the pressure coefficient, standard deviation ,the power spectrum, and the correlation between local aerodynamic force and overall aerodynamic force of the cross-section on different number of lower stabilizers are comprehensively compared and analyzed, which reveals the vibration suppression mechanism of the edge girder by lower stabilizers. The research results indicated that the cause of the vertical VIV resonance are the strong pressure fluctuation in the front separation and reattachment area of the upper surface, the strong correlation between the front aerodynamic force and the overall aerodynamic force of the lower surface, and the strong pressure fluctuation of the strong correlation in the rear part of the lower surface. Arranging a stabilizer in  the bottom of beam can significantly reduce pressure fluctuation, and arranging two stabilizers can further reduce the pressure fluctuation, which can greatly suppress VIV; Three stabilizers arranged at the bottom of beam promote the reattachment of airflow at the downstream faring, the cross-section pressure fluctuation is greatly weakened, and the correlation between the local aerodynamic force and the overall aerodynamic force is significantly destroyed, thus the VIV is suppressed effectively.

关键词

边主梁
/ 桥面输送机 / 稳定板 / 表面测压 / 风洞试验 / 涡振机理

Key words

Edge girder / deck conveyor / lower stabilizer / surface pressure / wind tunnel test / mechanism of vortex-induced vibration;

引用本文

导出引用
李春光,颜虎斌,梁爱鸿,韩艳,周旭辉. 稳定板对带式输送机边主梁斜拉桥涡振性能影响机理的研究[J]. 振动与冲击, 2022, 41(8): 34-44
LI Chunguang,YAN Hubin,LIANG Aihong,HAN Yan,ZHOU Xuhui. Mechanism study on the effect of a stabilizing plate on vortex induced vibration performance of a cable stayed bridge with a side main girder of a belt conveyor[J]. Journal of Vibration and Shock, 2022, 41(8): 34-44

参考文献

[1] 陈政清.桥梁风工程[M].北京:人民交通出版社,2005.
Chen Zhengqing. Wind engineering of bridge [M]. Beijing: China Communications Press, 2005 .
[2] 陈政清,黄智文.大跨度桥梁竖弯涡振限值的主要影响因素分析[J].中国公路学报,2015,28(09):30-37.
Chen Zhengqing, Huang Zhiwen. Analysis of Main Factors Influencing Allowable Magnitude of Vertical Vortex-induced Vibration of Long-span Bridges[J]. Journal of China highway, 2015, 28(09): 30-37.
[3] Gianni Arioli,Filippo Gazzola. Torsional instability in suspension bridges: The Tacoma Narrows Bridge case[J]. Communications in Nonlinear Science and Numerical Simulation,2017,42.
[4] Ronaldo C. Battista,Michèle S. Pfeil. Reduction of vortex-induced oscillations of Rio–Niterói bridge by dynamic control devices[J]. Journal of Wind Engineering & Industrial Aerodynamics,2000,84(3).
[5] Yozo Fujino,Yoshitaka Yoshida. Wind-Induced Vibration and Control of Trans-Tokyo Bay Crossing Bridge[J]. Journal of Structural Engineering,2002,128(8).
[6] Hui Li,Shujin Laima,Jinping Ou,Xuefeng Zhao,Wensong Zhou,Yan Yu,Na Li,Zhiqiang Liu. Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements[J]. Engineering Structures,2011,33(6).
[7] Hui Li,Shujin Laima,Qiangqiang Zhang,Na Li,Zhiqiang Liu. Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge[J]. Journal of Wind Engineering & Industrial Aerodynamics,2014,124.
[8] 刘健新.桥梁对风反应中的涡激振动及制振[J].中国公路学报,1995(02):74-79.
LIU Jianxin. Vortex induced vibration and its control in responses of bridge to wind[J].China Journal of Highway and Transport, 1995, 8( 2) : 74-79.
[9] Nagao F, Utsunomiya H, Yoshioka E, et al. Effects of handrails on separated shear flow and vortex-induced oscillation[J].Journal of Wind Engineering and Industrial Aerodynamics, 1997,69-71:819-827.
[10] 许福友,林志兴,李永宁,楼文娟.气动措施抑制桥梁涡振机理研究[J].振动与冲击,2010,29(01):73-76+238.
XU Fuyou, LIN Zhixing, LI Yongning. et al. Vortex resonance depression mechanism of a bridge deck with aerodynamic measures[J]. Journal of Vibration and Shock, 2010,29(1): 73-76.
[11] Fuyou Xu,Xuyong Ying,Yongning Li,Mingjie Zhang. Experimental Explorations of the Torsional Vortex-Induced Vibrations of a Bridge Deck[J]. Journal of Bridge Engineering,2016.
[12] 郭增伟,赵林,葛耀君,等..基于桥梁断面压力分布统计特性的抑流板抑制涡振机理研究[J].振动与冲击,2012,31(07):89-94+117.
GUO Zengwei,ZHAO Lin,GE Yaojun,et al. Mechanism analysis for vortex-induced vibration reduction of a flat streamlined steel box-shaped girder with airflow-suppressing board based on statistical property of surface pressure[J].Journal of Vibration and Shock,2012,31(7):89-94.
[13] K.C.S. Kwok,X.R. Qin,C.H. Fok,P.A. Hitchcock. Wind-induced pressures around a sectional twin-deck bridge model: Effects of gap-width on the aerodynamic forces and vortex shedding mechanisms[J]. Journal of Wind Engineering & Industrial Aerodynamics,2012,110.
[14] 程怡,周锐,杨詠昕,等.中央稳定板对分体箱梁桥梁的涡振控制[J].同济大学学报(自然科学版),2019,47(05):617-626.
CHENG Yi, ZHOU Rui, YANG Yongxin, et al. Vortex-Induced Vibration Control for Twin Box Girder Bridges with Vertical Central Stabilzers, JOURNAL OF TONGJI UNIVERSITY( NATURAL SCIENCE),2019,47(5):617-626.
[15] Ke Li, Guowei Qian, Yaojun Ge,etal.Control effect and mechanism investigation on the horizontal flow-isolating plate for PI shaped bridge decks’ VIV stability[J].Wind and Structures,2019,28(2):99-110.
[16] Yoshinobu Kubo,Kenji Sadashima,Eiki Yamaguchi,Kusuo Kato,Yuzo Okamoto,Takashi Koga. Improvement of aeroelastic instability of shallow π section[J]. Journal of Wind Engineering & Industrial Aerodynamics,2001,89(14).
[17] 李欢,何旭辉,王汉封,刘梦婷,彭思.π型断面超高斜拉桥涡振减振措施风洞试验研究[J].振动与冲击,2018,37(07):62-68.
LIHuan, HE Xuhui, WANG Hanfeng. et al. Wind Tunnel Tests for Vortex-induced Vibration Control Measures of a Super High Cable-stayed Bridge with π-cross Section[J].Journal of Vibration and Shock,2018,37(7):62-68.

PDF(2260 KB)

896

Accesses

0

Citation

Detail

段落导航
相关文章

/