一种惯质粘滞阻尼器的性能及其对拉索减振效果的试验研究

刘菁1,梁栋1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (8) : 93-101.

PDF(1796 KB)
PDF(1796 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (8) : 93-101.
论文

一种惯质粘滞阻尼器的性能及其对拉索减振效果的试验研究

  • 刘菁1,梁栋1,2
作者信息 +

An experimental investigation of an inertial viscous damper and its damping effect on a cable

  • LIU Jing1,LIANG Dong1,2
Author information +
文章历史 +

摘要

制作了一台利用齿轮、齿条、惯质元件和粘滞阻尼元件组合的拉索阻尼器样机,并开展了详细的拉索减振试验研究。建立了考虑拉索垂度、内阻尼特性、阻尼器齿轮惯质、转动轴惯质与轴承的阻尼特性等因素影响的拉索-阻尼器振动体系,并利用改进的Galerkin方法进行数值分析。详细讨论了该新型阻尼器的自身性能参数、耗能性能及其针对拉索的减振性能。试验结果与数值计算对比分析表明:惯质粘滞阻尼器具有明显的负刚度,由此产生的位移放大效应对拉索减振效果有显著的正面影响。改进的Galerkin方法能够用于惯质粘滞阻尼器-拉索减振系统的分析中,且该算法不依赖于计算初值的选择;数据计算结果与试验结果吻合较好,验证了本文计算方法的准确性;该惯质粘滞阻尼器对拉索振动具有良好的减振效果。

Abstract

A prototype of the inertial viscous damper for stay cables, composed of rack and pinion, inertial element, and viscous damping element, is fabricated, and detailed experimental investigation of stay cables' vibration control is carried out. A cable-damper system considering sag, internal damping characteristics, pinion's inertia, shaft's inertia, and bearing's damping characteristics was established. The numerical analysis was carried out using the Improved Galerkin method. The novel damper's performance parameters, energy dissipation capacity, and vibration control effect on cables are discussed. The comparison between experimental and numerical investigation shows that the inertial viscous damper produces apparent negative stiffness in the vibration damping of the cable, and the displacement amplification effect has a significant positive impact on the vibration damping effect. The Improved Galerkin method can be adopted in the analysis of cable-inertial viscous damper system, and the algorithm does not depend on the selection of initial values. The theoretical results are in good agreement with the experimental results, verifying the calculation method's accuracy in this study. The inertial viscous damper has a good damping effect on cable vibration.

Key words

Inertial viscous damper / Improved Galerkin's method / Numerical calculation / Cable test / Damping performance

引用本文

导出引用
刘菁1,梁栋1,2. 一种惯质粘滞阻尼器的性能及其对拉索减振效果的试验研究[J]. 振动与冲击, 2022, 41(8): 93-101
LIU Jing1,LIANG Dong1,2. An experimental investigation of an inertial viscous damper and its damping effect on a cable[J]. Journal of Vibration and Shock, 2022, 41(8): 93-101

参考文献

[1] 李锦华, 毛坤海, 余维光, 等. 雨滴冲击荷载对斜拉桥拉索风雨激振影响的初步分析 [J]. 振动与冲击, 2019, 38(10): 177-84.
Li Jin-Hua, Mao Kun-Hai, Yu Wei-Guang, et al. Preliminary analysis on the influence of raindrop impact loads on the cable rain-wind-induced vibration of cable-stayed bridges [J].Journal of Vibration and Shock,2019,38(10):177-184.(in Chinese)
[2] 康厚军, 郭铁丁, 赵跃宇. 大跨度斜拉桥非线性振动模型与理论研究进展 [J]. 力学学报, 2016, 48(03): 519-35.
Kang Hou-Jun, Guo Tie-Ding, Zhao Yue-Yu. Review on nonlinear vibration and modeling of large span cable-stayed bridge [J].Chinese Journal of Theoretical and Applied Mechanics,2016,48(03):519-535.(in Chinese)
[3] 吕建根, 康厚军, 赵跃宇. 梁主共振情形下索梁结构1∶1内共振分析 [J]. 计算力学学报, 2016, 33(01): 45-50.
Lv Jian-Gen, Kang Hou-Jun, Zhao Yue-Yu. One-to-one internal resonance of cable-stayed beam in the case of beam primary resonance [J]. Chinese Journal of Computational Mechanics,2016,33(01):45-50.(in Chinese)
[4] Ni Y Q, Wang X Y, Chen Z Q, et al. Field observations of rain-wind-induced cable vibration in cable-stayed Dongting Lake Bridge [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(5): 303-28.
[5] Chen R L, Zeng Q Y. Rain-wind induced chaotic vibration of cable on cable-stayed bridge [J]. Journal of Vibration and Shock, 2008, 27(7): 42-6.
[6] Chen Z Q, Wang X Y, Ko J M, et al. MR damping system for mitigating wind-rain induced vibration on Dongting Lake Cable-Stayed Bridge [J]. Wind and Structures, 2004, 7(5): 293-304.
[7] 顾明, 杜晓庆, 李寿英. 斜拉桥拉索风雨激振的实验和理论研究 [J]. 振动工程学报, 2007, 05): 473-9.
Gu Ming, Du Xiao-qing, Li Sou-ying. Study on rain-wind induced vibration of 3 DOF continuous cables in cable-stayed bridges [J]. Journal of Vibration Engineering, 2007, 20(5): 473-9. (in Chinese)
[8] 陈锐林, 曾庆元. 斜拉桥拉索风雨诱导混沌振动 [J]. 振动与冲击, 2008,27(07): 42-6+185.
Chen Rui-lin, Zeng Qing-yuan. Rain-wind induced chaotic vibration of cable on cable-stayed bridge [J]. Journal of Vibration and Shock, 2008, 27(7): 42-6. (in Chinese)
[9] Fujino Y, Kimura K, Tanaka H. Wind Resistant Design of Bridges in Japan [M]. Springer Japan, 2012.
[10] Caetano E. Cable Vibrations in Cable-stayed Bridges [M]. Cable Vibrations in Cable-stayed Bridges, 2007.
[11] Zhou H J, Sun L M, Xing F. Damping of Full-Scale Stay Cable with Viscous Damper: Experiment and Analysis [J]. Advances in Structural Engineering, 2014, 17(2): 265-74.
[12] Weber F, Hogsberg J, Krenk S. Optimal Tuning of Amplitude Proportional Coulomb Friction Damper for Maximum Cable Damping [J]. Journal of Structural Engineering, 2010, 136(2): 123-34.
[13] Chen L, Di F D, Xu Y Y, et al. Multimode cable vibration control using a viscous-shear damper: Case studies on the Sutong Bridge [J]. Structural Control and Health Monitoring, 2020, 27(6): 1-20.
[14] Chen L, Sun L, Xu Y, et al. A comparative study of multi-mode cable vibration control using viscous and viscoelastic dampers through field tests on the Sutong Bridge [J]. Engineering Structures, 2020, 224(111226): 1-16.
[15] Iemura H, Pradono M H. Advances in the development of pseudo-negative-stiffness dampers for seismic response control [J]. Structural Control and Health Monitoring, 2009, 16(7-8): 784-99.
[16] Ou J P, Li H. Analysis of capability for semi-active or passive damping systems to achieve the performance of active control systems [J]. Structural Control and Health Monitoring, 2010, 17(7): 778-94.
[17] Lazar I F, Neild S A, Wagg D J. Performance Analysis of Cables with Attached Tuned-Inerter-Dampers. [C]. Proceedings of the Dynamics of Civil Structures, Springer International Publishing,2015, Cham.
[18] Lazar I F, Neild S A, Wagg D J. Vibration suppression of cables using tuned inerter dampers [J]. Engineering Structures, 2016, 122,62-71.
[19] Chen L, Sun L M, Nagarajaiah S. Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics [J]. Smart Structures and Systems, 2015, 15(3): 627-43.
[20] Sun L M, Hong D X, Chen L. Cables interconnected with tuned inerter damper for vibration mitigation [J]. Engineering Structures, 2017, 151,57-67.
[21] Luo J N, Jiang J Z, Macdonald J H G. Damping Performance of Taut Cables with Passive Absorbers Incorporating Inerters [J]. Journal of Physics: Conference Series, 2016, 744(012046):1-11.
[22] Shi X, Zhu S Y, Spencer B F. Experimental Study on Passive Negative Stiffness Damper for Cable Vibration Mitigation [J]. Journal of Engineering Mechanics, 2017, 143(9): 1-13.
[23] Shi X, Zhu S Y, Li J Y, et al. Dynamic behavior of stay cables with passive negative stiffness dampers [J]. Smart Materials and Structures, 2016, 25(7): 1-15.
[24] Shi X, Zhu S Y. Dynamic characteristics of stay cables with inerter dampers [J]. Journal of Sound and Vibration, 2018, 423:287-305.
[25] Lu L, Duan Y-F, Spencer B F, et al. Inertial mass damper for mitigating cable vibration [J]. Structural Control and Health Monitoring, 2017, 24(10):1-12.
[26] 莫凯程. 采用惯性质量阻尼器的斜拉索振动控制研究 [D]; 浙江大学, 2017.
Mo Kai-Cheng. Vibration Control of Stay Cable using Inertial Mass Damper [D]. Hangzhou: Zhejiang University, 2017.(in Chinese)
[27] 崔智鑫. 惯质类阻尼器对斜拉桥拉索减振性能的研究 [D]; 北京交通大学 2018.
Cui Zhi-Xin. Study on Inerter Based Damper for Control of Cables in Cable-Stayed Bridges[D]. Beijing: Beijing Jiaotong University, 2018.(in Chinese)
[28] Chen L, Nagarajaiah S, Sun L M. A unified analysis of negative stiffness dampers and inerter-based absorbers for multimode cable vibration control [J]. Journal of Sound and Vibration, 2021, 494: 1-24.
[29] Irvine H M, Caughey T K. The Linear Theory of Free Vibrations of a Suspended Cable [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1974, 341(1626): 299-315.
[30] Krenk S, Nielsen S R K. Vibrations of a shallow cable with a viscous damper [J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2001, 458(2018): 339-57.
[31] Pacheco B M, Fujino Y, Sulekh A. Estimation Curve for Modal Damping in Stay Cables with Viscous Damper [J]. Journal of Structural Engineering, 1993, 119(6): 1961-79.
[32] Xu Y L, Yu Z. Vibration of Inclined Sag Cables with Oil Dampers in Cable-Stayed Bridges [J]. Journal of Bridge Engineering, 1998, 3(4): 194-203.
[33] Johnson E A, Baker G A, Spencer B F, Jr., et al. Semiactive damping of stay cables [J]. Journal of Engineering Mechanics, 2007, 133(1): 1-11.
[34] Johnson E A, Christenson R E, Spencer B F. Semiactive Damping of Cables with Sag [J]. Computer-Aided Civil and Infrastructure Engineering, 2003, 18(2): 132-46.
[35] Zhu H P, Li Y M, Shen W A, et al. Mechanical and energy-harvesting model for electromagnetic inertial mass dampers [J]. Mechanical Systems and Signal Processing, 2019, 120:203-20.
[36] 王修勇, 孙洪鑫, 陈政清. 旋转剪切式磁流变液阻尼器设计及力学模型 [J]. 振动与冲击, 2010, 29(10): 77-81+251.
Wang Xiu-Yong,Sun Hong-Xin,Chen Zhengqing.Design and mechanical model of rotating shear magnetorheological fluid damper[J]. Journal of Vibration and Shock, 2010,29(10):77-81+25(in Chinese).
[37] 孙利民, 狄方殿, 陈林, 等. 斜拉索-双阻尼器系统多模态减振理论与试验研究 [J]. 同济大学学报(自然科学版), 2021, 49(07): 975-85.
Sun Li-Min,Di Fang-Dian,Chen lin,et al.Theoretical and experimental studies on multimod vibration mitigation of cable with two dampers[J]. Joirnal of Tongji university(Natural science) , 2021, 49(07): 975-85(in Chinese).
[38] Yoneda M, Shimoda I. Effects of Elasticity on the Damping Characteristics of Viscous Shearing Damper and Estimation Curve for Modal Damping in Stay Cables with This Type of Dampers [J]. Doboku Gakkai Ronbunshu, 1993, 1993(480): 77-86. (in Japanese)
[39] Shi W X, Wang L K, Lu Z, et al. Experimental and numerical study on adaptive-passive variable mass tuned mass damper [J]. Journal of Sound and Vibration, 2019, 452: 97-111.
[40] Li Y, Shen W, Zhu H. Vibration mitigation of stay cables using electromagnetic inertial mass dampers: Full-scale experiment and analysis [J]. Engineering Structures, 2019, 200,1-18.
[41] 梁栋, 狄方殿, 陈红霞, 等. 索-梁耦合振动下的拉索复合减振方法研究 [J]. 振动与冲击, 2018, 37(05): 240-7
Liang Dong, Di Fang-Dian, Chen Hong-Xia, et al. Cable’s compound vibration reduction method under cable-girder coupled vibration[J]. Journal of Vibration and Shock, 2018,37(05):240-247. (in Chinese)
[42] 梁栋, 陈培, 李岩峰. 索梁耦合振动对拉索阻尼器的影响机理 [J]. 振动测试与诊断, 2014, 34(01): 113-8+193.
Liang Dong, Chen Pei,Li Yan-Feng The influence mechanism of the cable-beam coupling vibration on the cable damper [J]Journal of Vibration ,Measurement & Diagnosis, 2014,34(01):113-118+193. (in Chinese)

PDF(1796 KB)

990

Accesses

0

Citation

Detail

段落导航
相关文章

/