含压电分流阻尼的声学黑洞梁振动特性研究

万志威1,2,朱翔1,2,3,李天匀1,2,3,李敬1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 113-119.

PDF(1660 KB)
PDF(1660 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 113-119.
论文

含压电分流阻尼的声学黑洞梁振动特性研究

  • 万志威1,2,朱翔1,2,3,李天匀1,2,3,李敬1,2
作者信息 +

Vibration characteristics of acoustic black hole beam with piezoelectric shunt damping

  • WAN Zhiwei1,2, ZHU Xiang1,2,3, LI Tianyun1,2,3, LI Jing1,2
Author information +
文章历史 +

摘要

针对声学黑洞梁结构,引入压电分流阻尼形成声学黑洞压电复合结构,采用半解析法对其振动特性进行了分析。首先基于哈密顿原理,采用墨西哥帽状小波作为型函数,利用能量法对声学黑洞悬臂梁的自由振动和受迫振动进行求解,与有限元法结果吻合良好,验证了半解析法的可靠性。然后引入分流阻尼,通过等效介质法将分流阻尼等效为附加材料,利用其局域共振机制,分析了含分流阻尼的声学黑洞梁振动特性,从理论上分析了确定局域共振频率近似方法。压电分流阻尼可以通过调整电感值来使局域共振与结构共振产生耦合,从而使振动响应峰值产生衰减;另一方面适当的阻尼可以使振荡效应消失。针对第一阶共振峰值,设计出的含分流阻尼的声学黑洞梁比传统阻尼层声学黑洞梁的振动有明显衰减,为声学黑洞结构的低频振动控制提供了新的思路。

Abstract

Piezoelectric shunt damping is introduced to form the acoustic black hole piezoelectric composite structure for acoustic black hole beam structure. Its vibration characteristics are analyzed using the semi-analytical method. Based on the Hamiltonian principle, the Mexican Hat wavelet is used as the type function, and the energy method is used to solve the free vibration and forced vibration of the acoustic black hole cantilever. The results are in good agreement with the results of the FEM, which verifies the reliability of the semi-analytical method. Then the shunt damping is introduced to make use of its local resonance mechanism. The shunt damping is then introduced, and the shunt damping is equivalent to an additional material by the equivalent medium method. The acoustic black hole beam's vibration characteristics with shunt damping are analyzed using its local resonance mechanism. The approximate method to determine the local resonance frequency is theoretically analyzed. The piezoelectric shunt damping can couple the local resonance and structural resonance by adjusting the inductance value, thereby attenuating the vibration response peak. Proper damping can make the oscillation effect disappear. The designed acoustic black hole beam with shunt damping is significantly attenuated for the first-order resonance peak than the traditional damping layer acoustic black hole beam. It provides a new idea for low-frequency vibration control of acoustic black hole structure.

关键词

声学黑洞 / 分流阻尼 / 半解析法 / 局域共振

Key words

Acoustic black hole / shunt damping / semi-analytical method / local resonance

引用本文

导出引用
万志威1,2,朱翔1,2,3,李天匀1,2,3,李敬1,2. 含压电分流阻尼的声学黑洞梁振动特性研究[J]. 振动与冲击, 2022, 41(9): 113-119
WAN Zhiwei1,2, ZHU Xiang1,2,3, LI Tianyun1,2,3, LI Jing1,2. Vibration characteristics of acoustic black hole beam with piezoelectric shunt damping[J]. Journal of Vibration and Shock, 2022, 41(9): 113-119

参考文献

[1] Krylov VV, Shuvalov AL. Propagation of localised flexural vibrations along plate edges described by a power law[J]. Institute of acoustics. 2000,22(2):263-70.
[2] Krylov VV. New type of vibration dampers utilising the effect of acoustic 'black holes'[J]. Acta Acustica United with Acustica. 2004,90(5):830-837.
[3] Mironov MA. Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval[J]. Acoustical Physics,1988,34:546-547.
[4] Krylov VV. Geometrical-acoustics approach to the description of localized vibrational modes of an elastic solid wedge[J]. American lnstitute of physics. 1990,25(2):137-40.
[5] Krylov VV, Tilman FJBS. Acoustic 'black holes' for flexural waves as effective vibration dampers[J]. Journal of Sound and Vibration. 2004,274 (3-5):605-19.
[6] Conlon SC, Fahnline JB, Semperlotti F. Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic black holes[J]. The Journal of the Acoustical Society of America. 2015,137(1):447.
[7] 黄薇, 季宏丽, 裘进浩,等. 二维声学黑洞对弯曲波的能量聚集效应[J].振动与冲击. 2017,36(9):51-57.
HUANG Wei , JI Hongli , QIU Jinhao , et al. Energy focusing effect of Two-dimensional acoustic black hole on flexural waves[J]. Journal of Vibration and Shock, 2017,36(9):51-57.
[8] Tang LL, Cheng L, Ji HL, Qiu JH. Characterization of acoustic black hole effect using a one-dimensional fully-coupled and wavelet-decomposed semi-analytical model[J]. Journal of Sound and Vibration. 2016,374:172-184.
[9] Deng J, Zheng L, Guasch O, Wu H, et al. Gaussian expansion for the vibration analysis of plates with multiple acoustic black holes indentations[J]. Mechanical Systems and Signal Processing. 2019,131(C):317-134.
[10] Deng J, Guasch O, Zheng L. Ring-shaped acoustic black holes for broadband vibration isolation in plates[J]. Journal of Sound and Vibration. 2019,458:109-122.
[11] 季宏丽,黄薇, 裘进浩,等. 声学黑洞结构应用中的力学问题[J].力学进展. 2017,47(1):333-84.
JI Hongli, HUANG Wei, QIU Jinhao, et al. Mechanical problems in application of acoustic black hole structures[J]. Advances In Mechanics. 2017,47(1):333-84.
[12] Hagood NW, Flotow AV. Damping of structural vibrations with piezoelectric materials and passive electrical networks[J]. Journal of Sound and Vibration. 1991, 146(2):243-268.
[13] Behrens S, Fleming AJ, Moheimani SOR. A broadband controller for shunt piezoelectric damping of structural vibration[J]. Smart Materials & Structures. 2003,12(1):18-28.
[14] 李宁, 张景绘. 连续梁的压电分流阻尼模型[J]. 应用力学学报. 2006, 23(4):398-402.
Li N, Zhang JH. Piezoelectric Shunt Damping Model of Beam[J]. Chinese journal of applied mechanics. 2006, 23(4):398-402.
[15] 陈良. 压电分流声子晶体的带隙拓宽方法与减振特性研究[D]. 国防科学技术大学, 2015.
Chen L. Research on the band-gap broadening methods and vibration attenuation properties of the piezoelectric shunted
Phononic crystals[D]. Changsha: National University of Defense Technology, 2016.
[16] Wang G, Chen S, Wen J. Low-frequency locally resonant band gaps induced by arrays of resonant shunts with Antoniou's circuit: experimental investigation on beams[J]. Smart Materials Structures. 2010;20(1):015026.
[17] 张浩. 压电分流型声学超材料的隔声特性研究[D]. 长沙:国防科技大学, 2016.
Zhang H. Research on the Sound Insulation Properties of Acoustic Metamaterials with Piezoelectric Shunts[D]. Changsha:National University of Defense Technology, 2016.
[18] Beck BS, Cunefare KA. Improved negative capacitance shunt damping with the use of Acoustic Black Holes[C]. Active & Passive Smart Structures & Integrated Systems International Society for Optics and Photonics, 2014.
[19] Ji HL, Liang YK, Qiu JH, Cheng L, Wu YP. Enhancement of vibration based energy harvesting using compound acoustic black holes[J]. Mechanical Systems and Signal Processing. 2019,132:441-456.
[20] Zhao LX, Conlon SC, Semperlotti F. Broadband energy harvesting using acoustic black hole structural tailoring[J]. Smart Materials and Structures. 2014;23(6):065021.
[21] Zhao LX, Conlon SC, Semperlotti F. An experimental study of vibration based energy harvesting in dynamically tailored structures with embedded acoustic black holes[J]. Smart Materials and Structures. 2015;24(6).
[22] Zhao LX. Passive Vibration Control Based on Embedded Acoustic Black Holes[J]. Journal of Vibration Acoustics. 2016;138(4):041002.
[23] Zhao LX, Semperlotti F. Embedded Acoustic Black Holes for semi-passive broadband vibration attenuation in thin-walled structures[J]. Journal of Sound Vibration. 2016,42-52.
[24] Li N, Wang YZ, Wang YS. Active control of a black hole or concentrator for flexural waves in an elastic metamaterial plate[J]. Mechanics of Materials. 2020,142:103300.
[25] Craig RR, Kurdila AJ. Fundamentals of Structural Dynamics[M]: John Wiley, 2006.
[26] Bailey CD. Direct analytical solutions to non-uniform beam problems[J].Journal of Sound and Vibration. 1978,56:501-507.
[27] Kobayashi H, Sonoda K. Vibration and buckling of tapered rectangular plates with two opposite edges simply supported and the other two edges elastically restrained against rotation[J]. Journal of Sound and Vibration. 1991, 146(2):323-337.
[28] Hou T, Qin H. Continuous and discrete Mexican hat wavelet transforms on manifolds[J]. Graphical Models. 2012,74(4): 221-232.
[29] Deng J, Zheng L, Zeng PY, et al. Passive constrained viscoelastic layers to improve the efficiency of truncated acoustic black holes in beams[J]. Mechanical Systems and Signal Processing. 2019;118:461-476.
[30] 孙慷, 张福学. 压电学[M]. 北京:国防工业出版社, 1984.
Sun K, Zhang FX. Piezoelectricity[M]. Beijing:National Defense Industry Press, 1984.
[31] Airoldi L, Ruzzene M. Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos[J]. New Journal of Physics. 2011,13(11):113010.
[32] Mao Q, Pietrzko S. Control of Noise and Structural Vibration[M]. London : Springer-Verlag, 2013.

PDF(1660 KB)

Accesses

Citation

Detail

段落导航
相关文章

/