抑制低频横向振动的电动振动台参数优化

左曙光,潘健,吴旭东,冯朝阳

振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 159-166.

PDF(2336 KB)
PDF(2336 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 159-166.
论文

抑制低频横向振动的电动振动台参数优化

  • 左曙光,潘健,吴旭东,冯朝阳
作者信息 +

Parameter optimization of electric vibration table to suppress low frequency transverse vibration

  • ZUO Shuguang, PAN Jian, WU Xudong, FENG Zhaoyang
Author information +
文章历史 +

摘要

针对单轴电动振动台在被测件偏载工况下存在剧烈低频横向振动分量的问题,通过连接弹簧的参数优化对低频横向振动进行了抑制。首先建立了能够反映横向振动特性的电动振动台机电耦合模型,说明了横向振动产生机理,确定了参数优化的思路;其次,分析了电动振动台系统主要连接弹簧的参数对系统固有特性及横向振动的影响,为进行参数优化提供参考;最后,提出了面向车辆道路行驶工况的横向振动优化评价指标,利用带精英策略的快速非支配排序遗传算法对主要影响参数进行了优化,显著降低了目标频段内电动振动台的横向振动量级。提出的电动振动台参数优化方法能够有效抑制其低频横向振动,并为电动振动台连接弹簧的设计与选型提供参考。

Abstract

Aiming at the severe additional low-frequency lateral vibration under offset loading conditions for the vertical single-axis electrodynamic shaker, the lateral vibration is suppressed with the connecting springs’ parameter optimization. Firstly, an electrodynamic shaker’s electromechanical coupling model considering the lateral vibration was established. The lateral vibration mechanism was analyzed and the parameter optimization method was determined. Secondly, the influences of the main connecting springs’ parameters on the lateral vibration were analyzed as the reference for the parameter optimization. Finally, the lateral vibration optimization indexes for vehicle’s driving conditions were proposed. The main parameters were optimized using the fast non-dominated sorting genetic algorithm with the elite strategy. The results show that the proposed parameter optimization method can effectively suppress the electrodynamic shaker’s low-frequency lateral vibration and provide a reference for the connecting springs’ selection.

关键词

电动振动台 / 低频横向振动 / 参数优化 / 遗传算法

Key words

electrodynamic shaker / low-frequency lateral vibration / parameter optimization / genetic algorithm

引用本文

导出引用
左曙光,潘健,吴旭东,冯朝阳. 抑制低频横向振动的电动振动台参数优化[J]. 振动与冲击, 2022, 41(9): 159-166
ZUO Shuguang, PAN Jian, WU Xudong, FENG Zhaoyang. Parameter optimization of electric vibration table to suppress low frequency transverse vibration[J]. Journal of Vibration and Shock, 2022, 41(9): 159-166

参考文献

[1] 吴道俊. 车辆疲劳耐久性分析、试验与优化关键技术研究[D]. 合肥: 合肥工业大学, 2012.
WU Dao-jun. Research on the key technologies of analysis, test and optimization for vehicle fatigue durability [D]. Hefei: Hefei University of Technology, 2012.
[2] 张  茜. 基于路面激励的客车骨架振动疲劳可靠性研究[D]. 西安: 长安大学, 2017.
ZHANG Qian. Research on strictural reliability of bus frame based on roughness of the road [D]. Xi’ an: Chang’ an University, 2017.
[3] Machado M R, Appert A, Khalij L. Spectral formulated modelling of an electrodynamic shaker [J]. Mechanics Research Communications, 2019, 97: 70-78.
[4] Waimer S, Manzato S, Peeters B, et al. Modelling and simulation of a closed-loop electrodynamic shaker and test structure model for spacecraft vibration testing [J]. Advances in Aircraft and Spacecraft Science, 2018, 5(2): 205-223.
[5] 孟繁莹. 大型电动振动台动力学分析与数值模拟研究 [D]. 北京: 北京工业大学, 2013.
MENG Fan-ying. Study on large electric vibration table dynamics analysis and numerical simulation [D]. Beijing: Beijing University of Technology, 2013.
[6] Hoffait S, Marin F, Simon D, et al. Measured-based shaker model to virtually simulate vibration sine test [J]. Case Studies in Mechanical Systems and Signal Processing, 2016, 4: 1-7.
[7] Hoffait S, Marin F, Simon D, et al. Virtual shaker testing at V2i: measured-based shaker model and industrial test case [C]// International Conference on Noise and Vibration Engineering, Belgium, 2016. 1013-1026.
[8] Paulitsch C, Gardonio P, Elliott S J, et al. Design of a lightweight, electrodynamic, inertial actuator with integrated velocity sensor for active vibration control of a thin lightly-damped panel [C]// 2004 International Conference on Noise and Vibration Engineering, Belgium. 2005. 239-253.
[9] Bueren T, Troester G. Design and optimization of a linear vibration-driven electromagnetic micro-power generator [J]. Sensors and Actuators A-Physical, 2007, 135(2): 765-775.
[10] Botezan A, Darie S, Vadan I, et al. Design and analysis of a permanent-magnet electrodynamic vibrator [C]// 8th International Symposium on Advanced Electromechanical Motion Systems, France, 2009. 388-393.
[11] Yang X, Cao Y, Liu S, et al. Optimization design of a vibration-powered generator with annular permanent magnetic spring and soft magnetic pole [J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3).
[12] Lee G H, Kim H R. Numerical analysis of the electromagnetic force for design optimization of a rectangular direct current electromagnetic pump [J]. Nuclear Engineering and Technology, 2018, 50(6): 869-876.
[13] 李红强. 电动振动台动圈的有限元分析与优化设计 [D]. 苏州: 苏州大学, 2006.
LI Hong-qiang. Finite element analysis and optimum design for armature of electrodynamic vibration shaker [D]. Suzhou: Suzhou University, 2006.
[14] 程  鑫. 三轴液压角振动台的结构优化与控制系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.
CHENG Xin. Structural optimization of 3-axis hydraulic angular vibration table and research on its control system [D]. Harbin: Harbin Institute of Technology, 2007.
[15] 唐  波, 何  闻. 宽频带电磁式角振动台运动部件动态优化设计[J]. 农业机械学报, 2015, 46(10): 376-382.
TANG Bo, HE Wen. Dynamic optimization design of moving component for broadband electromagnetic angular vibrator [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10): 376-382.
[16] Zhou L, Han J. Optimum design of electrodynamic shaker’s support spring to improve low frequency performance [J]. Journal of Vibroengineering, 2015, 17(1): 346-356.
[17] Zhou L, Han J, Ji G. Optimum design of new high strength electrodynamic shaker in broad work frequency range [J]. Journal of Vibroengineering, 2014, 16(5): 2552-2562.
[18] Wang B, Liu D, Zhou L, et al. Electrodynamic shaker skeleton optimization based on border shape analysis [C]// 4th IEEE Conference on Industrial Electronics and Applications, China, 2009. 3834-3838.
[19] 汪  超, 沈黎明, 战  茜. 机械振动台台面的结构分析与优化设计 [J]. 计量与测试技术, 2018, 45(1): 8-10.
WANG Chao, SHEN Li-ming, ZHAN Qian. Structural analysis and optimal design of mechanical vibrator appending table [J]. Metrology and Measurement Technique, 2018, 45(1): 8-10.
[20] 仝宁可, 杜环宇, 李鸿光, 等. 600kN超大推力电磁振动试验台动圈结构的模态分析与优化 [J]. 噪声与振动控制, 2019, 39(3): 24-28.
TONG Ning-ke, DU Huan-yu, LI Hong-guang, et al. Modal analysis and optimization of the moving coil in a 600kN electromagnetic vibration shaker [J]. Noise and Vibration Control, 2019, 39(3): 24-28.
[21] Zuo S, Feng Z, Pan J, et al. Electromechanical coupling dynamic modeling and analysis of vertical electrodynamic shaker considering low frequency lateral vibration [J]. Advances in Mechanical Engineering, 2020, 12(10): 1-16.
[22] 张英会, 刘辉航, 王德成. 弹簧手册 [M]. 第2版. 北京: 机械工业出版社, 2008.
ZHANG Ying-hui, LIU Hui-hang, WANG De-cheng. Spring manual [M]. Version 2. Beijing: Machinery Industry Press, 2008.
[23] Srinivas N, Kalyanmoy D. Multi-objective optimization using non-dominated sorting in genetic algorithms [J]. Evolutionary Computation, 1994, 2(3): 221-248.
[24] 冯士刚, 艾  芊. 带精英策略的快速非支配排序遗传算法在多目标无功优化中的应用 [J]. 电工技术学报, 2007, 22(12): 146-151.
FENG Shi-gang, AI Qian. Application of fast and elitist non-dominated sorting generic algorithm in multi-objective reactive power optimization [J]. Transactions of CHINA Electrotechnical Society, 2007, 22(12): 146-151.

PDF(2336 KB)

Accesses

Citation

Detail

段落导航
相关文章

/