考虑炸高和相位角影响的射孔枪卡枪及强度流固耦合分析

窦益华1,朱晓栋1,范永均1,2,李明飞1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 167-173.

PDF(2405 KB)
PDF(2405 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 167-173.
论文

考虑炸高和相位角影响的射孔枪卡枪及强度流固耦合分析

  • 窦益华1,朱晓栋1,范永均1,2,李明飞1
作者信息 +

Fluid-solid interaction analysis for perforation gun jamming and strength considering

  • DOU Yihua, ZHU Xiaodong, FAN Yongjun, LI Mingfei
Author information +
文章历史 +

摘要

射孔作业过程中常发生射孔枪卡枪、损坏等安全事故,影响勘探开发进程。本文首先建立射孔弹-射孔枪-射孔液-套管-砂岩三维有限元模型,结合ALE算法,实现射孔液-射流-枪-套管-砂岩之间的流固耦合,分析不同炸高和相位角对射流侵彻过程中射孔枪毛刺和应力强度的影响。研究表明,单枚弹、炸高12mm时,毛刺4.1mm,最大应力1075MPa,孔道周围超过材料屈服极限的应力区域直径达到61mm;炸高18mm时,毛刺3.9mm,最大应力997MPa,超过材料屈服极限的应力区域直径达到45mm;炸高24mm时,毛刺3.6mm,最大应力912MPa,超过材料屈服极限的应力区域直径达到38mm;炸高增加,毛刺高度和最大应力以及对射孔枪材料的损伤区域范围均减小;炸高12mm,相位角30°、60°、90°时,毛刺高度较单枚时变化很小,超过材料屈服极限的应力区域直径分别为55mm、42mm、66mm,此区域内,在高爆轰压力下,射孔枪将发生向外鼓胀,即所谓的“胀枪”,引起卡枪事故,所以相位角60°时射孔枪的强度安全性更好。通过本文研究,解决了聚能爆轰仿真时常发生的分析意外终止和速度超限溢出问题,可为射孔爆轰侵彻类问题研究提供思路。

Abstract

Safety accidents such as chucking and damage of perforating guns often occur during perforation operations, which affect the exploration and development process. This paper uses LS-DYNA software to establish a three-dimensional finite element model of perforating bullet-perforating gun-perforating fluid-casing-sandstone, combined with the ALE algorithm, realize the fluid-solid coupling between perforating fluid-jet-gun-casing-sandstone, Analyze the effects of different blast heights and phase angles on the burrs and stress intensity of the perforating gun during the jet penetration process. Studies have shown that when a single bullet and a blast height of 12mm, the burr is 4.1mm, the maximum stress is 1075MPa, and the diameter of the stress area that exceeds the yield limit of the material around the hole reaches 61mm. When the blast height is 18mm, the burr is 3.9mm, the maximum stress is 997MPa, and the diameter of the stress area exceeding the yield limit of the material reaches 45mm; When the blast height is 24mm, the burr is 3.6mm, the maximum stress is 912MPa, and the diameter of the stress area exceeding the yield limit of the material reaches 38mm; The blast height is increased, the burr height and the maximum stress, and the damage area of the perforating gun material are reduced. When the blast height is 12mm and the phase angle is 30°, 60°, and 90°, the height of the burr changes little compared with that of a single piece. The diameter of the stress area exceeding the yield limit of the material is 55mm, 42mm, 66mm. In this area, under high detonation pressure, the perforating gun will bulge outwards, which is the so-called "bulging gun", causing a jamming accident. Therefore, the strength and safety of the perforating gun is better when the phase angle is 60°. Through the research in this paper, the problems of accidental analysis termination and velocity overrun that often occur in the simulation of shaped energy detonation are solved, which can provide ideas for the research of perforation detonation penetration problems.

关键词

射孔枪 / 卡枪 / 炸高 / 相位角 / 流固耦合

Key words

perforating gun / stuck gun / blast high / phase angle / fluid-solid coupling

引用本文

导出引用
窦益华1,朱晓栋1,范永均1,2,李明飞1. 考虑炸高和相位角影响的射孔枪卡枪及强度流固耦合分析[J]. 振动与冲击, 2022, 41(9): 167-173
DOU Yihua, ZHU Xiaodong, FAN Yongjun, LI Mingfei. Fluid-solid interaction analysis for perforation gun jamming and strength considering[J]. Journal of Vibration and Shock, 2022, 41(9): 167-173

参考文献

[1] 刘念念,宋丹丹,金辉,等. 半球形聚能装药对复合靶板结构的毁伤数值仿真与试验研究[J]. 振动与冲击,2018,37(04):153-159.
Liu Niannian, Song Dandan, Jin Hui, et al. Numerical simulation and experimental study of damage to composite target plate structure by hemispherical shaped charge[J]. Journal of Vibration and Shock,2018,37(04):153-159.
[2] 金玮玮,张昭,韩秀清,等. 射孔枪射流形成的数值模拟与弹壳设计[J].塑性工程学报,2010,17 (6): 121-126.
Jin Weiwei, Zhang Zhao, Han Xiuqing, et al. Numerical simulation of perforating gun jet formation and shell design[J]. Journal of Plasticity Engineering, 2010, 17 (6): 121-126.
[3] 李明飞,徐绯,窦益华. 爆轰冲击载荷作用下射孔段管柱动力响应分析[J]. 振动与冲击,2019,38(18):185-191+222.
Li Mingfei, Xu Fei, Dou Yihua. Dynamic response analysis of perforated pipe string under detonation shock load[J]. Vibration and Shock, 2019, 38(18): 185-191+222.
[4] 亢方亮,盛选禹. 射孔弹侵彻套管三维有限元模拟[J]. 科学技术与工程,2011,11(27):6588-6593.
Kang Fangliang, Sheng Xuanyu. Three-dimensional finite element simulation of perforating projectile penetration into casing[J]. Science Technology and Engineering,2011,11(27):6588-6593.
[5] 闫炎,管志川,赵效锋,等. 固井水泥射孔力学响应规律及损伤特征[J] . 东北石油大学学报,2019,43(03):101-108+11.
Yan Yan, Guan Zhichuan, Zhao Xiaofeng, et al. Mechanical response and damage characteristics of cement perforation in cementing[J]. Journal of Northeast Petroleum University, 2019,43(03):101-108+11.
[6] 李奔驰,唐凯,陈华彬,等. 210MPa射孔枪耐压性能影响因素分析及现场应用[J]. 测井技术,2016,40(03):377-381.
Li Benz, Tang Kai, Chen Huabin, et al. Analysis of influencing factors of 210MPa perforating gun pressure performance and field application[J]. Logging Technology,2016,40(03):377-381.
[7] P. A. Baranov,V. L. Zhdanov,S. A. Isaev,V. B. Kharchenko,A. E. Usachov. Numerical Simulation of the Unsteady Laminar Flow Past a Circular Cylinder with a Perforated Sheath[J]. Fluid Dynamics,2003,38(2):203-213.
[8] 金玮玮,张昭,张洪武. 药型罩锥角对射孔枪射流冲击过程的影响[J]. 计算力学学报,2011,28 (b4): 43-48.
Jin Weiwei, Zhang Zhao, Zhang Hongwu. The influence of the cone angle of the charge type cover on the jet impact process of the perforating gun[J]. Chinese Journal of Computational Mechanics, 2011, 28 (b4): 43-48.
[9] 秦彦斌,姚杰,戴征宇,等. 射孔枪抗外挤强度的影响因素分析[J]. 石油机械,2019,47(08):27-32.
Qin Yanbin, Yao Jie, Dai Zhengyu, et al. Analysis of influencing factors of perforating gun anti-extrusion strength[J]. Petroleum Machinery, 2019,47(08):27-32.
[10] 刘作鹏,王海文,闫相祯. 应用弹塑性力学相关理论分析套管射孔后剩余强度[J] . 石油钻探技术,2007(02):31-35.
Liu Zuopeng, Wang Haiwen, Yan Xiangzhen. Analyzing the residual strength of the casing after perforation using the related theory of elastoplastic mechanics[J]. Petroleum Drilling Technology,2007(02):31-35.
[11] 朱铭颉,顾文彬,唐勇,等. 炸高对侵彻效应影响试验和数值模拟研究[J] . 爆破器材,2010,39(02):31-34.
Zhu Mingjie, Gu Wenbin, Tang Yong, et al. Experimental and numerical simulation research on the impact of explosion height on penetration effect[J]. Blasting Materials,2010,39(02):31-34.
[12] 强洪夫,范树佳,陈福振,等. 基于SPH方法的聚能射流侵彻混凝土靶板数值模拟[J]. 爆炸与冲击,2016,36(04):516-524.
Qiang Hongfu, Fan Shujia, Chen Fuzhen, et al. Numerical simulation of shaped energy jet penetrating concrete target based on SPH method[J]. Explosion and Shock,2016,36(04):516-524.
[13] 任劼,党发宁,马宗源,等. 复杂地应力条件下聚能装药侵彻深部砂岩穿透深度研究[J] .岩石力学与工程学报,2018,37(03):679-688.
Ren Jie, Dang Faning, Ma Zongyuan, et al. Research on penetration depth of shaped charge penetrating deep sandstone under complex geostress conditions[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(03):679-688.
[14] BAUMANN C, WILLIAMS H. Perforating high-pressure deepwater wells in the gulf of Mexico[C]//SPE146809, 2011, 1-13.
[15] 李明飞,徐绯,窦益华. 射孔枪毛刺和胀枪及其应力强度三维仿真[J]. 塑性工程学报,2019,26(02):271-280.
Li Mingfei, Xu Fei, Dou Yihua. Three-dimensional simulation of perforating gun burrs and expansion guns and their stress intensity[J]. Chinese Journal of Plasticity Engineering,2019,26(02):271-280.
[16] HILL R J, JARVIE D M, ZUMBERGE J, et al. Oil and gas geochemistry and petroleum systems of the FortWorth Basin[J]. Aapg Bulletin, 2007, 91(4):445-473.

PDF(2405 KB)

340

Accesses

0

Citation

Detail

段落导航
相关文章

/