当前关于水力发电机组轴系的研究主要基于确定性的框架,但在实际工程中,不确定性因素对机组轴系的影响不容忽视。鉴于此,本文将在不确定性框架下对水力发电机组轴系结构固有特性和动态响应开展不确定性量化和参数的全局敏感性分析。首先,一个包含不确定参数的水力发电机组轴系动力学模型被建立。然后,基于广义多项式混沌方法构建了不确定结构参数与输出变量之间的关系,并结合最大熵原理,求得系统随机输出的具体概率分布表达式。另外,通过对多项式混沌展开系数的简单后处理获得了不确定输入参数对轴系结构固有频率和振动响应不确定性贡献的量化指标。同时,不确定性量化及敏感性分析的可靠性也用Monte-Carlo模拟进行了验证。最重要地,本文所提出的不确定性框架下水力发电机组轴系不确定性及参数敏感性研究对水力发电机组的设计,优化和运行具有重要指导意义。
Abstract
Researches of the shaft system for hydroelectrical generating unit is mainly based on the deterministic framework. However, in the actual engineering, influences of uncertain factors on shaft system of that cannot be ignored. In view of this, this paper will be presented to devote to the uncertainty quantification and global sensitivity analysis of inherent characteristic and dynamic response of the shaft system for hydroelectrical generating unit under uncertainty framework. Firstly, a dynamical model of the shaft system for hydroelectrical generating unit is established including uncertain parameters. Then, relationships between uncertain structural parameters and output variables are described by the generalized polynomial chaos approach. And combining the maximum entropy principle, the concrete probability distribution expressions of random outputs are attained. In addition, indexes describing contributions of uncertain input parameters on the uncertainty of natural frequency and vibration response are gotten by a simple post-processing for expansion coefficients. At the same time, the reliability of uncertainty quantification and sensitivity analysis in this paper is also verified by Monte-Carlo simulation. Most importantly, the uncertainty quantification and parameter sensitivity analysis of the hydraulic generating unit under the uncertainty framework proposed in this paper are meaningful for the design, optimization and operation of that.
关键词
水力发电机组 /
转轴 /
不确定性 /
参数敏感性分析 /
多项式混沌
{{custom_keyword}} /
Key words
hydroelectric generating unit /
shaft /
uncertainty /
parameter sensitivity analysis /
polynomial chaos
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 许贝贝. 水力发电机组系统可靠性与多能互补综合性能研究[D]. 杨凌:西北农林科技大学,2020.
XU Bei-bei. Reliability and comprehensive performance of a hydroelectric generating system with multi-energy complementary [D]. Yangling: Northwest A&F University, 2020.
[2] Xu B B, Chen D Y, Zhang H, et al. Dynamic analysis and modeling of a novel fractional-order hydro-turbine-generator unit[J]. Nonlinear Dynamics, 2015,81(3):1263-1274.
[3] Huang Z W, Zhou J Z, Yang M Q, et al. Vibration characteristics of a hydraulic generator unit rotor system with parallel misalignment and rub-impact [J]. Archive of Applied Mechanics, 2011,81:829-838.
[4] Zhang L K, Wu Q Q, Ma Z Y, et al. Transient vibration analysis of unit-plant structure for hydropower station in sudden load increasing process [J]. Mechanical systems and signal processing, 2019,120(APR.1):486-504.
[5] Yan D L, Chen Q J, Zheng Y, et al. Dynamic evolution of a bulb hydroelectric generating unit considering effects of the blades [J]. Energy Conversion & Management, 2019,185:183-201.
[6] Dorji U, Ghomashchi R. Hydro turbine failure mechanisms: An overview[J]. Engineering Failure Analysis, 2014,44:136-147.
[7] Helton J C, Johnson J D, Sallaberry C J, et al. Survey of sampling-based methods for uncertainty and sensitivity analysis [J]. Reliability Engineering & System Safety, 2006,91(10/11):1175-1209.
[8] 朱大鹏,魏洁. 包装件振动可靠性的不确定度量化及灵敏度分析[J]. 振动与冲击, 2021, 40(3): 204-211.
ZHU Dapeng, WEI Jie. Uncertainty quantification and sensitivity analysis of package vibration reliability. JOURNAL OF VIBRATION AND SHOCK, 2021, 40(3): 204-211.
[9] 张解生,许贝贝,陈帝伊,等. 水力机组系统参数全局敏感性分析[J]. 水力发电学报,2019, 38(04): 146-159.
ZHANG Jie-sheng, XU Bei-bei, CHEN Di-yi, et al. Global sensitivity analysis of hydro power generator unit system [J]. Journal of Hydroelectric Engineering, 2019, 38(04): 146-159.
[10] Sepahvand K, Marburg S, Hardtke H.-J. Uncertainty quantification in stochastic systems using polynomial chaos expansion [J]. International Journal of Applied Mechanics, 2010,2(02):305-353.
[11] Nelson H D. A finite rotating shaft element using Timoshenko beam theory [J]. Journal of Mechanical Design,1980,102(4):793-803
[12] Liu M , Gorman D G . Formulation of Rayleigh damping and its extensions [J]. Computers & Structures, 1995,57(2):277-285.
[13] 虞烈,刘恒,谢友柏,等. 轴承-转子系统动力学 [M]. 西安:西安交通大学出版社,2001.
YU Lie, LIU Heng, XIE You-bai, et al. Dynamics of bearing-rotor system [M]. Xi’an: XI’AN JIAOTONG UNIVERSITY PRESS, 2001.
[14] Crestaux T, Matre O L, Martinez J M. Polynomial chaos expansion for sensitivity analysis [J]. Reliability Engineering & System Safety, 2009,94(7):1161-1172.
[15] Abramov R . A practical computational framework for the multidimensional moment-constrained maximum entropy principle [J]. Journal of Computational Physics,2006,211(1): 198-209
[16]刘洋. 基于非线性振动的多失效模式水轮发电机组可靠性研究[D]. 南宁:广西大学, 2013.
LIU Yang. Reliability of hydraulic turbine-generator units with multiple failure modes based on nonlinear vibration [D]. Nanning: Guangxi University, 2013.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}