不同类型炸药水下爆炸时冰层损伤特性研究

王莹,秦业志,王志凯,姚熊亮

振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 189-198.

PDF(3698 KB)
PDF(3698 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 189-198.
论文

不同类型炸药水下爆炸时冰层损伤特性研究

  • 王莹,秦业志,王志凯,姚熊亮
作者信息 +

Damage characteristics of ice layer during underwater blasting of different types of explosives

  • WANG Ying, QIN Yezhi, WANG Zhikai, YAO Xiongliang
Author information +
文章历史 +

摘要

为了探究水下爆炸冲击波与气泡脉动载荷联合作用下冰层损伤特性以及不同类型含能炸药水下爆炸对冰层损伤特性,本文采用动力学分析软件LS-DYNA中的任意拉格朗日欧拉(ALE)法建立了计算水下爆炸气泡动力学模型及水下爆炸冰-水全耦合模型,考虑了冲击波载荷及复杂的气泡载荷耦合全过程;在此基础上,分析了烈性奥克托今炸药(简称HMX)及不同铝氧比黑索金炸药(简称RDX)对冰层损伤特性的影响。研究结果表明:计算模拟结果与试验结果吻合良好,验证了本文计算模型的有效性;揭示了水下爆炸冲击波和气泡载荷联合作用下的冰层损伤机理; HMX炸药对冰层的损伤威力更强,RDX(0.36)比RDX(0)、RDX(0.16)、RDX(0.63)对冰层产生的毁伤效应要强,其与TNT对冰层造成的毁伤效应强度接近。依据研究结果冲击波载荷是造成冰层损伤区域大小的主要毁伤元素,而气泡载荷主要影响冰层毁伤区域的破碎形态;根据不同毁伤目标应用特性,调节炸药配方比,改变冲击波能与气泡能的输出结构,可实现冰层的不同毁伤模式。

Abstract

To investigate the damage characteristics of ice sheet under the combination of underwater explosion and bubble pulsating load, and subjected to different energetic explosives underwater explosion loads, this paper uses the arbitrary Lagrange-Eule(ALE) method to establish the calculation of the underwater explosion bubble dynamic model and the underwater explosion ice-water fully coupled model, considering the coupling between the shock wave load and the complex bubble load. On this basis, the influence of different type explosives, such as the strong Octogen explosive (HMX) and different Al-Oxide ratios Hexogen explosives (RDX) on the ice damage characteristics were analyzed. The results show that during the process, the calculated simulation results are in good agreement with the test results, verifying the effectiveness of the calculation model and have revealed the ice damage mechanism under the combined action of underwater explosion shock wave and bubble load. RDX (0.36) have a strong damage effect on ice layer than RDX (0), RDX (0.16), RDX (0.63), which is close to the damage effect of TNT explosive on ice layer; according to the application characteristics of damage targets application situation, the shock wave load is the main damage element that causes the size of the ice damage area, and the bubble load mainly affects the crushing shape of the ice damage area; adjusting the explosive formula ratio, changing the shock wave energy and bubble energy achieves the purpose of efficient damage mode to structures.

关键词

含能炸药 / 水下爆炸 / 冰层损伤 / 冲击波 / 气泡

Key words

Energetic explosive / underwater explosion / ice damage / shock wave / bubble

引用本文

导出引用
王莹,秦业志,王志凯,姚熊亮. 不同类型炸药水下爆炸时冰层损伤特性研究[J]. 振动与冲击, 2022, 41(9): 189-198
WANG Ying, QIN Yezhi, WANG Zhikai, YAO Xiongliang. Damage characteristics of ice layer during underwater blasting of different types of explosives[J]. Journal of Vibration and Shock, 2022, 41(9): 189-198

参考文献

[1] 宋长青, 杨旭升, 晏俊伟, 等. 车载式火箭爆炸带破冰破凌技术研究[J]. 工程爆破, 2013, 4(19):50-53.
SONG Chang-qin, YANG Xu-sheng, YAN Jun-wei, et al. Study on the technology of the ice and the ice flood broken by the vehicle-mounted rocket explosion belt [J]. Engineering blasting, 2013, 4(19):50-53.
[2] 史兴隆, 王呼和, 佟铮. 高能破冰弹水下破冰过程数值模拟[J]. 爆破器材, 2014, 43(06): 53-56.
SHI Xing-long, WANG Hu-he, TONG Zheng, et al. Numerical simulation of ice sheet breaking by underwater high energy bomb [J]. Explosive materials, 2014, 43(06): 53-56.
[3] 刘之平, 王涛,郭新蕾,等. 黑龙江防凌爆破试验研究[J]. 水利学报, 2017, 48(03): 253-260.
LIU Zhi-ping, WANG Tao, GUO Xin-lei et al. Breaking ice with explosive in Heilongjiang River [J]. Journal of hydraulic engineering, 2017, 48(03): 253-260.
[4] 佟铮, 马万珍, 王宁. 黄河内蒙古河段凌汛期爆炸破冰的基本方法[J]. 人民黄河, 2003(12): 8-9.
TONG Zheng, MA Wan-zhen, WANG Ning. Basic methods of explosive icebreaking in ice run period in inner Mongolia section of the Yellow river [J]. Yellow river, 2003(12): 8-9.
[5] BARASH RM. Underwater explosion beneath ice [R]. Potomac River:United States Naval Ordnance Laboratory, 1962: 62-96.
[6] MELLORM M. Breaking ice with explosive [R]. Hanover: U.S Army Cold Regions Research and Engineering Laboratory, 1983:1-57.
[7] 梁向前, 何秉顺, 谢文辉. 黄河冰层的爆炸破冰及作用效应试验[J]. 工程爆破,  2012. 18(2): 83-85, 82.
LIANG Xiang-qian, HE Bing-shun, XIE Wen-hui. Experimental study on blasting effect on upon thick ice of the yellow river [J]. Engineering blasting, 2012. 18(2): 83-85,82.
[8] 张明方, 张富贵, 梁向前, 等. 集中药包爆破破冰的试验研究[J]. 工程爆破, 2015, 21(05): 43-46.
ZHANG Ming-fang, ZHANG Fu-gui, LIANG Xiang-qian, et al. Ice-breaking experimental study on blasting with constrained charge [J]. Engineering blasting, 2012. 18(2): 83-85,82.
[9] 吴瑞波,郝明盛,武彩岗, 等. 水中爆破破冰参数的优化试验[J]. 工程爆破, 2014, 20(6):25-28.
   WU Rui-bo,HAO Ming-sheng,WU Cai-gang, et al. The parametres optimization experiment of ice breaking by underwater blasting[J]. Engineering blasting, 2014,20(6):25-28.
[10] 张忠和,梁向前,王树理. 水下爆破破冰机理的数值分析研究[J]. 爆破, 2015, 32(6):150-155.
    ZHANG Zhong-he, LIANG Xiang-qian, WANG Shu-li. Numerical simulation of ice breaking mechanism of underwater blasting [J]. Blasting,2015,32(6): 150-155.
[11] 曲艳东,刘万里,翟诚.水下爆炸冲击波传播规律数值分析[J].爆破, 2017, 34(2):100-104.
    QU Yan-dong, LIU Wan-li, ZHAI Cheng. Numerical simulation of propagation law of shock waves in process of breaking ice by underwater blasting[J]. Blasting,2017,34(2):100-104.
[12] Wang Q, Wang Y, Zan Y, Lu W, Bai X, Guo J. Peridynamics simulation of the fragmentation of ice cover by blast loads of an underwater explosion [J]. Journal of Marine Science and Technology, 2017, 23: 52-66.
[13] 王莹,肖巍,姚熊亮,等. 水下爆炸冲击波载荷作用下冰层破碎特性及其影响因素[J]. 爆炸与冲击, 2019, 39(7):073103.
    WANG Ying, XIAO Wei, YAO Xiong-liang, et al. Fragmentation of ice cover subjected to underwater explosion shock wave load and its influence factors [J]. Explosives and shock waves, 2019, 39(7):073103.
 [14] 中国海洋石油总公司. Q/HSn 3000-2002, 中国海海冰条件及应用规定 [S]. 北京:中国海洋石油总公司,2002.
China National Offshore Oil Corporation. Q/HSn 3000-2002, Regulations for offshore ice condition & application in China sea [S]. Beijing: China National Offshore Oil Corporation, 2002.
[15] Pernas-Sánchez J, Artero-Guerrero JA, López-Puente J, Varas D. Numerical methodology to analyze the ice impact threat: Application to composite structures. Materials & Design. 2018, 141: 350-60.
[16] Gao Y, Hu Z, Ringsberg JW, Wang J. An elastic–plastic ice material model for ship-iceberg collision simulations. Ocean Engineering. 2015, 102: 27-39.
[17]  田俊宏, 孙远翔, 张之凡. 铝氧比对含铝炸药水下爆炸载荷及能量输出结构的影响[J]. 高压物理学报, 2019, 33(6): 146-154.
TIAN Jun-hong, SUN Yuan-xiang, ZHANG Zhi-fan. Effect of AL/O ratio on underwater explosion load and energy output configuration of aluminized explosive [J]. Chinese journal of high pressure physics, 2019, 33(6): 146-154.
[18] 赵倩, 聂建新, 王秋实, 等. 含铝炸药水下爆炸及其对舰船毁伤的数值模拟[J]. 兵工学报, 2017, 38(02): 298-304.
ZHAO Qian, NIE Jian-xin, WANG Qiu-shi, et al. Numerical simulation on underwater explosion of aluminized explosives and its damage to ship [J]. Acta armamentarii, 2017, 38(02): 298-304.
[19] 周霖, 徐更光. 含铝炸药水中爆炸能量输出结构 [J]. 火炸药学报, 2003, 26(01): 30-32.
ZHOU Lin, XU Geng-guang. Configuration of underwater energy output for aluminized explosive mixtures [J]. Chinese journal of explosives and propellants, 2003, 26(01): 30-32.
[20] 荣吉利, 赵自通, 冯志伟, 等. 黑索今基含铝炸药水下爆炸性能的实验研究[J]. 兵工学报, 2019, 40(11): 2177-2183.
RONG Ji-li, ZHAO Zi-tong, FENG Zhi-wei, et al. Experimental study of underwater explosion performance of RDX-based aluminized explosive [J]. Acta armamentarii, 2019, 40(11): 2177-2183.
[21] Cole, R.H., 1948. Underwater Explosion. Princeton University Press, New Jersey.

PDF(3698 KB)

451

Accesses

0

Citation

Detail

段落导航
相关文章

/