基于MFC的地铁轨道振动能量收集研究

谢伟平,陈谣,王先锋

振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 210-218.

PDF(3370 KB)
PDF(3370 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 210-218.
论文

基于MFC的地铁轨道振动能量收集研究

  • 谢伟平,陈谣,王先锋
作者信息 +

Metro track vibration energy collection based on PFC

  • XIE Weiping, CHEN Yao, WANG Xianfeng
Author information +
文章历史 +

摘要

压电陶瓷极限受拉承载力弱,导致传统悬臂型俘能器在工程应用中极易开裂损坏,与其持续供能的初衷相违背。压电纤维复合材料(MFC)具有优异的柔韧性、耐久性,恰恰弥补了这一缺陷。然而以MFC材料为基础的俘能器在地铁轨道振动能量俘获中的应用鲜有研究。本文首先建立地铁车辆-轨道耦合系统模型,得到钢轨在车辆荷载作用下的动力响应。紧接着基于混合规则和代表体积元建立d_33型悬臂式MFC俘能器的力电耦合模型,并将钢轨的动力响应作为俘能器的输入荷载预测其电能输出,讨论了材料参数、几何参数及车辆荷载特性对输出电能的影响。并进一步通过实验研究,验证了所建立理论分析模型的正确性。最后基于LTC3588-1能量管理芯片进行了能量收集-存储模拟,验证了MFC俘能器用于无线传感器供能的可行性。

Abstract

Traditional cantilevered piezoelectric energy harvesters containing simple PZT patches could easily crack due to the low tensile yield strength of PZT, which is against its original intention to be a sustainable power source. Piezoelectric macro fiber composite (MFC) has much higher flexibility and durability compared with a simple PZT patch. However, the application of MFC-harvesters in energy harvesting from metro rail vibration is rarely studied. In the present study, the metro vehicle-track system model is firstly established, and the dynamic response of rail under vehicle load is obtained. Then, based on the mixing rule and the representative volume element, the electromechanical coupling model of d33-type cantilevered MFC harvester is established. Meanwhile, the dynamic response of the rail track is taken as the input excitation of the MFC harvester to predict its output power, in which the effects of material parameters, geometric parameters and vehicle load characteristics on the output power are discussed. Furthermore, experimental study is also conducted to validate the present model. At last, using LTC3588-1 energy management chip, the energy collection-storage simulation is carried out to verify the feasibility of MFC harvester for wireless sensor.

关键词

压电纤维复合材料 / 地铁轨道振动 / 悬臂式俘能器 / 能量收集和存储

Key words

macro fiber composite / metro rail vibration / cantilever beams harvester / energy harvesting and storage;

引用本文

导出引用
谢伟平,陈谣,王先锋. 基于MFC的地铁轨道振动能量收集研究[J]. 振动与冲击, 2022, 41(9): 210-218
XIE Weiping, CHEN Yao, WANG Xianfeng. Metro track vibration energy collection based on PFC[J]. Journal of Vibration and Shock, 2022, 41(9): 210-218

参考文献

[1] 芮小博, 李一博, 曾周末. 压电悬臂梁振动能量收集器研究进展[J]. 振动与冲击, 2020, 39(17): 112-123.
RUI Xiao-bo, LI Yi-bo, ZENG Zhou-mo. Research progress of piezoelectric cantilever vibration energy collector[J]. Journal of Vibration and Shock, 2020, 39(17): 112-123.
[2] Wischke M, Masur M, Kro ̈ner M, et al. Vibration harvesting in traffic tunnels to power wireless sensor nodes[J]. Smart Mater Struct, 2011, 20(08): 085014.
[3] Lynch J P , Wang K W , Sohn H , et al. Implementation of a piezoelectric energy harvester in railway health monitoring[J]. Proc. of SPIE, 2014, 9061:90612Q.
[4] 高鸣源. 磁浮式轨道振动俘能理论及应用技术[D].成都:西南交通大学,2018.
GAO Ming-yuan. Theory and technology of railway energy of harvesting by manetic levition oscillation[D]. Chengdu: Southwest Jiaotong University, 2018.
[5] Wang X F, Shi Z F. Application of flex-compressive piezoelectric energy harvesting cell in railway system[C]. //21st International Conference on Composite Materials, Xi’an, 2017: 1-8.
[6] Williams R B, Grimsley B W, Inman D J, et al. Manufacturing and mechanics-based characterization of macro fiber composite actuators[J]. Proceedings of IMECE2002 Adaptive Structures and Materials Systems, 2002: 79-89.
[7] Shahab S, Erturk A, Electrohydroelastic Euler–Bernoulli–Morison model for underwater resonant actuation of macro-fiber composite piezoelectric cantilevers[J]. Smart Materials and Structures, 2016, 25(10):105007.
[8] 徐振龙, 单小彪, 谢涛. 宽频压电振动俘能器的研究现状综述[J]. 振动与冲击, 2018, 37(08): 190-199+205.
XU Zhen-long, SHAN Xiao-biao, XIE Tao. A review of broadband piezoelectric vibration energy harvester[J]. Journal of Vibration and Shock, 2018, 37(08): 190-199+205.
[9] 牛澎波, 王平. 扣件胶垫老化对地铁振动的影响[J]. 铁道建筑, 2017, 057(12): 116-118.
NIU Peng-bo,Wang Ping. Influence of fastener pad aging on vibration of subway structure[J].Railway Engineering, 2017, 057(12): 116-118.
[10] 耿传智, 余庆. 地铁轨道结构减振性能的仿真分析[J]. 同济大学学报(自然科学版), 2011, 39(001): 85-89.
GENG Chuan-zhi, Yu Qing. Shock absorption analysis of subway rail track structure[J]. Journal of Tongji University (Natural Science Edition) , 2011, 39(001): 85-89.
[11] 翟婉明.车辆-轨道耦合动力学(第4版)[M].北京:科学出版社,2015.
ZHAI Wan-ming. Vehicle-track coupling dynamics(Fourth edition) [M]. Beijing: Science Press, 2005.
[12] Xu Q Y, Ou X, Au F T K, et al. Effects of track irregularities on environmental vibration caused by underground railway[J]. European Journal of Mechanics - A/Solids, 2016, 59: 280-293.
[13] 谢伟平, 刘亨. 城市轨道交通“公轨合一”型高架桥车桥耦合振动分析[J]. 工程力学, 2016, 33(02):127-134.
XIE Wei-ping, LIU Heng. Vehicle-bridge interaction analysys of a super bridge in urnban railway srstem[J]. Engineering Mechanics, 2016, 33(02): 127-134.
[14] 马蒙. 基于敏感度的地铁列车振动环境影响预测及动态评
价体系研究[D].北京: 北京交通大学,2012.
MA Meng. Study on the prediction of metro train-induced
vibrations based on sensitivity of environmental influence and
design stage-accompanied evaluation system[D].Beijing:
Beijing Jiaotong University, 2012.
[15] Grzybek D, Micek P. Piezoelectric energy harvesting based on Macro Fiber Composite from a rotating shaft[J]. Physica Scripta, 2019, 94:095802.
[16] 危权, 周静, 沈杰, 等.压电纤维复合材料极化响应电极结构优化[J]. 硅酸盐学报, 2020, 48(01): 15-20.
WEI Quan , ZHOU Jing, SHEN Jie, et al. Optimization of Electrode Structure for Macro-fiber Composites Polarization Response[J]. Journal of the Chinese Ceramic Society, 2020, 48(01): 15-20.
[17] Zhang S Q, Li Y X, Schmidt R.Modeling and simulation of macro-fiber composite layered smart structures[J] Composite Structure, 2015, 126: 89-100.
[18] Deraemaeker A , Nasser H, Benjeddou A, et al. Mixing Rules for the piezoelectric properties of macro fiber composites[J]. Journal of Intelligent Material Systems and Structures, 2009, 20(12): 1475-1482.
[19] Song H J , Choi Y T , Wereley N M , et al. Energy harvesting devices using macro-fiber composite materials[J]. Journal of Intelligent Material Systems and Structures, 2008, 21(06): 647-658.
[20] 谢伟平, 花雨萌. 基于舒适度的钢桁架-混凝土组合楼板动力特性研究[J/OL]. 建筑结构学报, 2022, 43(1): 173-181.
XIE Wei-ping, HUA Yu-meng, Research on dynamic characteristics of steel truss-concrete composite floor based on serviceability[J]. Journal of Building Structures, 2022, 43(1): 173-181.
[21] Thomson W T, DAHLEH M D. Theory of vibration with applications [M]. Beijing: Tsinghua University Press, 2005.
[22]《地铁设计规范》(GB 50157-2013) [S]. 北京: 中国建筑工业出版社出版, 2014.
   《Code for design of metro》(GB 50157-2013) [S].Beijing: China Architecture and Building Press, 2014.
[23] Yang Y, Tang L. Equivalent circuit modeling of piezoelectric energy harvester [J]. Journal of Intelligent Material Systems and Structures, 2009, 20(18): 2223-2235.
[24] Linear Technology Corporation. LTC3588-1 Piezoelectric
Energy Harvesting Power Chip Data Sheet[R]. Linear Technology Corporation, 2010.

PDF(3370 KB)

Accesses

Citation

Detail

段落导航
相关文章

/