一种带宽优化选取的ATF方法及其在齿轮故障诊断中的应用

陈向民,黎琦,张亢,段萌,牛晓瑞,李录平

振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 253-259.

PDF(1167 KB)
PDF(1167 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 253-259.
论文

一种带宽优化选取的ATF方法及其在齿轮故障诊断中的应用

  • 陈向民,黎琦,张亢,段萌,牛晓瑞,李录平
作者信息 +

A bandwidth optimization selection ATF method and its application in gear fault diagnosis

  • CHEN Xiangmin, LI Qi, ZHANG Kang, DUAN Meng, NIU Xiaorui, LI Luping
Author information +
文章历史 +

摘要

自适应时变滤波(Adaptive time-varying filtering,ATF)方法是一种基于数据驱动的非平稳信号处理方法,可有效分离变转速下的齿轮故障信号。但在ATF方法中,滤波带宽的选取需依据经验人为选取,具有较大的主观性。因此,针对ATF方法中滤波带宽的自适应优化选取,以齿轮啮合阶次与其临近阶次的能量比作为指标,提出了一种基于带宽优化选取的ATF方法。该方法先采用线调频小波路径追踪算法估计齿轮故障信号中的瞬时频率,然后设置不同的滤波带宽值构建自适应时变滤波器,再对滤波后的信号进行阶次分析,并计算齿轮啮合阶次与其临近阶次的能量比,最后挑选出最佳能量比所对应的滤波带宽作为最优带宽值来对信号进行滤波分析,进而诊断齿轮故障。对变转速下的齿轮局部故障进行了仿真和实例分析,并将之与集合经验模态分解(ensemble empirical mode decomposition,EEMD)方法对比,结果表明,该方法不仅可自适应选取滤波带宽,减少滤波误差,而且能有效提取齿轮故障特征信号,凸显齿轮故障特征。

Abstract

Adaptive time-varying filtering (ATF) method is a non-stationary signal processing method based on data-driven, which can effectively extract gear fault signals under variable rotational speeds. However, in the ATF method, it's subjective that the selection of filtering bandwidth needs to be manually selected based on experience. Therefore, aiming at the adaptive optimal selection of filtering bandwidth in the ATF method, an adaptive time-varying filtering method based on bandwidth optimal selection is proposed, taking the energy ratio of gear meshing order and its adjacent order as an index. The method firstly estimates the instantaneous frequency in the gear fault signal by using chirplet path pursuit, then sets different filter bandwidth values to construct an adaptive time-varying filter, then performs order analysis on the filtered signal, and calculates the energy ratio between the gear meshing order and its adjacent order, finally selects the filter bandwidth corresponding to the optimal energy ratio as the optimal bandwidth value to perform filter analysis on the signal, and further diagnoses gear faults. The simulation and case analysis of gear local fault under variable speed are carried out and compared with ensemble empirical mode decomposition(EEMD) method. The results show that this method can not only adaptively select filter bandwidth and reduce filter error, but also effectively extract gear fault feature signal and highlight gear fault characteristics.

关键词

自适应时变滤波 / 滤波带宽 / 线调频小波路径追踪 / 阶次分析 / 能量比 / 齿轮

Key words

Adaptive time-varying filtering / Filter bandwidth / Chirplet path pursuit / Order analysis / Energy ratio / Gear

引用本文

导出引用
陈向民,黎琦,张亢,段萌,牛晓瑞,李录平. 一种带宽优化选取的ATF方法及其在齿轮故障诊断中的应用[J]. 振动与冲击, 2022, 41(9): 253-259
CHEN Xiangmin, LI Qi, ZHANG Kang, DUAN Meng, NIU Xiaorui, LI Luping. A bandwidth optimization selection ATF method and its application in gear fault diagnosis[J]. Journal of Vibration and Shock, 2022, 41(9): 253-259

参考文献

[1] 张进,冯志鹏,褚福磊. 基于时间-小波能量谱的齿轮故障诊断[J]. 振动与冲击,2011,30(1):157-161.
Zhang Jin, Feng Zhipeng, Chu Fulei. Fault diagnosis of gears based on time-wavelet energy spectrum[J]. Journal of Vibration and Shock, 2011, 30(1): 157-161.
[2] 胥永刚,赵国亮,马朝永,等. 双树复小波和局部投影算法在齿轮故障诊断中的应用[J]. 振动工程学报, 2015,28 (4):650-656.
Xu Yonggang, Zhao Guoliang, Ma Chaoyong, et al. Application of gear fault diagnosis method based on dual-tree complex wavelet transform and local projective method[J]. Journal of Vibration Engineering, 2015, 28 (4): 650-656 .
[3] Guo Wei, Tse P W. A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals[J]. Journal of Sound and Vibration, 2013, 332(2): 423-441.
[4] Wang Liming, Shao Yimin. Fault feature extraction of rotating machinery using a reweighted complete ensemble empirical mode decomposition with adaptive noise and demodulation analysis[J]. Mechanical Systems and Signal Processing, 2020, 138: 106545.
[5] Li Ying, Zhao Haiyang, Lee Jay, et al. A compound interpolation envelope local mean decomposition and its application for fault diagnosis of reciprocating compressors[J]. Mechanical Systems and Signal Processing,2018, 110: 273-295.
[6] Wang Lei, Liu Zhiwen, Miao Qiang, et al. Time– frequency analysis based on ensemble local mean decomposition and fast kurtogram for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2018, 103: 60-75.
[7] 唐贵基,王菲,周福成,等. 基于谱峭度与变分模态分解的转子微弱不对中故障诊断[J]. 噪声与振动控制, 2018,38(1): 204-208.
Tang Guiji, Wang Fei, Zhou Fucheng, et al. Fault Diagnosis of Weak Misalignment of Rotors Based on Spectral Kurtosis and VMD[J]. Noise and Vibration Control, 2018, 38(1): 204-208.
[8] Wang Yanxue, Markert R, Xiang Jiawei, et al. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system[J]. Mechanical Systems and Signal Processing, 2015, 60-61: 243-251.
[9] Yang Y, Peng Z K, Meng G, et al. Characterize highly oscillating frequency modulation using generalized Warblet transform[J]. Mechanical Systems and Signal Processing, 2012, 26: 128–140.
[10] 林京,赵明. 变转速机械设备动态信号分析方法的回顾与展望[J]. 中国科学:技术科学,2015,45(7):669-686.
LIN Jing,ZHAO Ming. Dynamic signal analysis for speed-varying machinery: A review[J]. Scientia Sinica (Technologica), 2015, 45(7): 669–686.
[11] 王况,王科盛,左明健. 基于阶次分析技术的行星齿轮箱非平稳振动信号分析[J]. 振动与冲击,2016,35(05):140-145+195.
Wang Kuang, Wang Kesheng, Zuo Ming-jian. Fault diagnosis of a planetary gearbox based on order tracking[J]. Journal of Vibration and Shock, 2016, 35(05): 140-145+195.
[12] Morsy Mohamed. Assessment of gear pit monitoring system based on order analysis[J]. International Journal of Vehicle Noise and Vibration. 2018, 14(4): 320-340.
[13] Luo Jiesi, Zhang Shaohui, Zhong Mingen, et al. Order spectrum analysis for bearing fault detection via joint application of synchrosqueezing transform and multiscale chirplet path pursuit[J]. Shock and Vibration, 2016, (4): 1-11
[14] 彭富强,于德介,罗洁思,等. 基于稀疏信号分解的自适应时变滤波器及其在齿轮故障诊断中的应用[J]. 机械工程学报,2010,46(24):46-53.
Peng Fuqiang, Yu Dejie, Luo Jiesi, et al. MSCSSD-based adaptive time-varying filter and its application to gearbox fault diagnosis[J]. Chinese Journal of Mechanical Engineering, 2010, 46(24): 46-53.
[15] Wu Chunyan, Liu Jian, Peng Fuqiang, et al. Gearbox fault diagnosis using adaptive zero phase time-varying filter based on multi-scale chirplet sparse signal Decomposition [J]. Chinese Journal of Mechanical Engineering, 2013, 26(4): 831-838.
[16] 陈向民,黎琦,张亢,等. 变转速齿轮箱复合故障的自适应时变滤波分析[J]. 振动与冲击,2019,38(14):138-145.
Chen Xiangmin, Li Qi, Zhang Kang, et al. Adaptive time-varying filtering method for gearbox compound fault diagnosis under variable rotational speed[J]. Journal of Vibration and Shock, 2019, 38(14): 138-145.

PDF(1167 KB)

578

Accesses

0

Citation

Detail

段落导航
相关文章

/