基于共线混频的粘接界面固化非线性超声评价

苑博1,税国双1,汪越胜1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 260-266.

PDF(1618 KB)
PDF(1618 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 260-266.
论文

基于共线混频的粘接界面固化非线性超声评价

  • 苑博1,税国双1,汪越胜1,2
作者信息 +

Nonlinear ultrasonic evaluation of bonding interface curing based on collinear frequency-mixing

  • YUAN Bo1, SHUI Guoshuang1, WANG Yuesheng1,2
Author information +
文章历史 +

摘要

共线混频法是一种非常有效的非线性超声检测方法。该方法是利用两列波在介质中的非线性相互作用特性,实现对材料力学性能的无损检测与评价。首先利用有限元软件ABAQUS,对粘接胶层中含随机分布微裂纹的模型进行了共线混频数值模拟,得到了共振波幅值随胶层微裂纹数的变化情况。随后以6061铝合金/改性丙烯酸酯胶/6061铝合金粘接试件为研究对象,采用共线横波和纵波混频检测技术,实验研究了共振波幅值随粘接界面固化时间的变化情况。结果表明,共振波幅值与粘接胶层中随机分布的裂纹数、粘接试件的固化时间之间存在一定的内在联系。随着裂纹数的增加,共振波幅值不断减小;随着固化时间的增加,共振波幅值不断增大,直到固化完成其大小趋于稳定。因此,利用共线混频技术可实现对粘接界面固化过程的有效监测和评价。

Abstract

The collinear wave mixing method is one of the promising non-destructive evaluation methods with nonlinear ultrasonic waves. In this technique, evaluation of the mechanical properties of materials is realized by using the nonlinear interaction between two waves propagating in the medium with damage. The collinear wave mixing detection of bonding specimen with randomly distributed micro-cracks in the adhesive layer was numerically studied using the finite element software ABAQUS; and the variation of resonant wave amplitude with the number of micro-cracks was obtained. Experimental tests were then conducted on the adhesive specimen of aluminum alloy 6061/modified acrylate adhesive/ aluminum alloy 6061; and the variation of resonant wave amplitude with curing time was obtained based on the wave mixing of collinear transverse and longitudinal waves. The results show that there are some internal relations between the amplitude of resonant wave, the number of micro-cracks in the adhesive layer and the curing time of the bonding specimen. The amplitude of resonant wave decreases constantly with the increases of the number of micro-cracks. With increasing curing time, the amplitude of resonant wave increases constantly and tends to be stable until the curing process is completed. Collinear wave mixing technique can be used effectively to monitor and evaluate the curing process of the adhesive.

关键词

粘接固化 / 共线混频 / 非线性超声 / 无损检测与评价

Key words

adhesive curing;collinear wave mixing;nonlinear ultrasonic;non-destructive evaluation 

引用本文

导出引用
苑博1,税国双1,汪越胜1,2. 基于共线混频的粘接界面固化非线性超声评价[J]. 振动与冲击, 2022, 41(9): 260-266
YUAN Bo1, SHUI Guoshuang1, WANG Yuesheng1,2. Nonlinear ultrasonic evaluation of bonding interface curing based on collinear frequency-mixing[J]. Journal of Vibration and Shock, 2022, 41(9): 260-266

参考文献

[1] 孙德林, 余先纯. 胶黏剂与粘接技术基础[M]. 北京: 化学工业出版社, 2014.
SUN Delin, YU Xianchun. Adhesive and adhesive technology foundation[M].Beijing:Chemical Industry Press,2014.
[2] 王超, 梁钒, 黄玉东. 胶粘剂固化行为对性能的影响[J]. 中国胶粘剂, 2005, 14(10): 14-16.
WANG Chao, LIANG Fan, HUANG Yudong. The effect of curing behavior on the adhesive properties[J]. China Adhesives, 2005,14(10): 14-16.
[3]  马宏伟, 张一澍, 王星, 等. 基于声全息的超声波与微缺陷耦合声场特性研究[J]. 振动与冲击, 2019, 38(3): 75-79.
MA Hongwei, ZHANG Yishu, WANG Xing, et al. Ultrasonic wave-micro defect coupled sound field characteristics based on acoustic holography[J]. Journal of Vibration and Shock, 2019, 38(3): 75-79.
[4]  刘增华, 冯雪健, 任捷, 等. 基于频率-波数分析的激光Lamb波传播特性试验研究[J]. 振动与冲击, 2019, 38(22): 70-78.
LIU Zenghua, FENG Xuejian, REN Jie, et al. Experimental study on the propagation characteristics of laser-induced Lamb waves based on frequency-wavenumber analysis. Journal of Vibration and Shock, 2019, 38(22): 70-78.
[5]  苑博, 税国双, 汪越胜. 循环温度疲劳作用下粘接界面损伤的非线性超声评价[J]. 物理学报, 2018, 67(7): 74302.
Yuan Bo, Shui Guo-Shuang, Wang Yue-Sheng. Nonlinear ultrasonic evaluation of damage to bonding interface under cyclic temperature fatigue[J]. Acta Physica Sinica, 2018, 67(7): 074302.
[6] Shui G, Song X, Xi J, et al. Experimental characterization of impact fatigue damage in an adhesive bonding using the second harmonics[J]. Journal of Nondestructive Evaluation, 2017, 36(2): 23.
[7]  Li X, Shui G, Zhao Y, et al. Propagation of non-linear Lamb waves in adhesive joint with micro-cracks distributing randomly[J]. Applied Sciences. 2020, 10(3): 741.
[8]  苑博, 税国双, 汪越胜. 非线性超声混频检测技术在无损检测中的研究进展[J]. 机械工程学报, 2019, 55(16): 33-46.
YUAN Bo, SHUI Guo-Shuang, Wang Yue-Sheng. Advances in research of nonlinear ultrasonic wave mixing detection technology in non-destructive evaluation[J]. Journal of Mechanical Engineering, 2019, 55(16): 33-46.
[9] 焦敬品, 孙俊俊, 吴斌, 等. 结构微裂纹混频非线性超声检测方法研究[J]. 声学学报, 2013, 48(6): 648-656.
JIAO Jingpin, SUN Junjun, WU Bin, et al. A frequency-mixing nonlinear ultrasonic technique for micro-crack detection[J]. Acta Acustica, 2013, 48(6): 648-656.
[10] 刘斯明, 彭地, 赵翰学, 等. SiCp颗粒增强铝基复合材料非共线非线性响应试验观察[J]. 机械工程学报, 2012, 48(22): 21-26.
LIU Siming, PENG Di, ZHAO Hanxue, et al. Experimental observation of nonlinear response of SiCp aluminum-matrix composites using non-collinear technique[J]. Journal of Mechanical Engineering, 2012, 48(22): 21-26.
[11] Liu M H, Tang G X, Jacobs L J, et al. Measuring acoustic nonlinearity parameter using collinear wave mixing[J]. Journal of Applied Physics, 2012, 112(2): 375-381.
[12]  Tang G, Liu M, Jacobs L J, et al. Detecting localized plastic strain by a scanning collinear wave mixing method[J]. Journal of Nondestructive Evaluation, 2014, 33(2): 196-204.
[13]  Zhang Y H, Li X X, Wu Z Y, et al. Fatigue life prediction of metallic materials based on the combined nonlinear ultrasonic parameter[J]. Journal of Materials Engineering and Performance, 2017, 26(8): 3648-3656.
[14]  Li F L, Zhao Y X, Cao P, et al. Mixing of ultrasonic Lamb waves in thin plates with quadratic nonlinearity[J]. Ultrasonics, 2018, 87: 33-43.
[15]  Jiao J P, Meng X J, He C F, et al. Nonlinear Lamb wave-mixing technique for micro-crack detection in plates[J]. NDT & E International, 2017, 85: 63-71.
[16] JU T, ACHENBACH J D, JACOBS L J, et al. A non-collinear mixing technique to measure the acoustic nonlinearity parameter of an adhesive bond from one side of the sample[J]. The Journal of the Acoustical Society of America ,2017,141(5):3905-3905.
[17]  Sun M X, Xiang Y X, Deng M X, et al. Scanning non-collinear wave mixing for nonlinear ultrasonic detection and localization of plasticity[J]. NDT & E International, 2018, 93: 1-6.
[18]  Chen Z M, Tang G X, Zhao Y X, et al. Mixing of collinear plane wave pulses in elastic solids with quadratic nonlinearity[J]. Journal of the Acoustical Society of America, 2014, 136(5): 2389-2404.
[19]  Zhao Y X, Xu Y M, Chen Z M, et al. Detection and characterization of randomly distributed micro-cracks in elastic solids by one-way collinear mixing method[J]. Journal of Nondestructive Evaluation, 2018, 37(3): 47.
[20]  Ding X, Zhao Y, Deng M, et al. One-way Lamb mixing method in thin plates with randomly distributed micro-cracks[J]. International Journal of Mechanical Sciences, 2020, 171: 105371.
[21]  王学刚, 朱亮, 陈剑虹. 铝合金粘接接头失效模型的研究 [J]. 机械工程材料, 2007, 31(5): 48-51+61.
WANG Xuegang, ZHU Liang, CHEN Jianhong. Failure model for aluminum alloy adhesive joints[J]. Materials for Mechanical Engineering, 2007, 31(5): 48-51+61.
[22]  彭博, 税国双, 汪越胜. 蜂窝夹层板结构中导波的传播特性及其脱粘损伤的检测[J]. 振动与冲击, 2019, 38(12): 140-147.
 PENG Bo, SHUI Guo-Shuang, Wang Yue-Sheng. Properties of guided waves propagating in honeycomb sandwich plates and the detection of disbonding damage using ultrasonic waves[J]. Journal of Vibration and Shock, 2019, 38(12): 140-147.
[23]  何静. 室温固化丙烯酸酯胶粘剂[J]. 北京林业大学学报, 1994, 16(4): 92-100.
HE Jing. Curing acrylate adhesive under room temperature[J]. Journal of Beijing Forestry University, 1994, 16(4): 92-100.
[24]  唐黎明, 庹新林. 高分子化学(第2版)[M]. 北京: 清华大学出版社, 2009.
TANG Liming, TUO Xinlin. Polymer chemistry, 2nd[M]. Beijing: Tsinghua University Press, 2009.
[25] 王槐三,寇晓康.高分子化学教程[M].北京:科学出版社,2007.
WANG Huaisan, KOU Xiaokang. Polymer chemistry course[M]. Beijing: Science Press, 2007.

PDF(1618 KB)

Accesses

Citation

Detail

段落导航
相关文章

/