带有微孔粘弹性芯层的纤维金属混杂层合板振动分析模型

姜世杰1,2,王子恒1,2,于长帅1,2,3,任旭辉1,2,王昕彤1,2,王相平4,韩清凯1,2,李晖1,2,4

振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 59-65.

PDF(1428 KB)
PDF(1428 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 59-65.
论文

带有微孔粘弹性芯层的纤维金属混杂层合板振动分析模型

  • 姜世杰1,2,王子恒1,2,于长帅1,2,3,任旭辉1,2,王昕彤1,2,王相平4,韩清凯1,2,李晖1,2,4
作者信息 +

Vibration analysis model of fiber-metal laminated plates with microporous viscoelastic  layer

  • JIANG Shijie1,2, WANG Ziheng1,2, YU Changshuai1,2,3, REN Xuhui1,2 WANG Xintong1,2, WANG Xiangping4, HAN Qingkai1,2, LI Hui1,2,4
Author information +
文章历史 +

摘要

本文建立了带有微孔粘弹性芯层的纤维金属混杂层合板振动分析模型。基于多孔材料弹性模量与密度的关系,导出了二维规则微孔分布形式下粘弹层的弹性模量表达式。采用经典层合板理论表示金属层与纤维层的位移场,同时为了考虑微孔粘弹性层的剪切变形影响,使用Reddy高阶剪切变形理论描述其位移场。进一步,基于Rayleigh-Ritz法、复模量法、应变能法和振型叠加法,求解获得了结构系统的固有频率、阻尼特性和脉冲激励下的时、频域振动响应。最后,以自行制备的带有单层微孔(直径0.5mm,孔间距2mm)的粘弹性芯层的纤维金属混杂层合板试件为研究对象,开展了实验验证研究。理论与测试结果对比发现,前3阶固有频率、阻尼比以及响应峰值的最大计算误差分别不超过4.5%,9.7%和7.5%,进而验证了所提出的理论模型的正确性。另外,依托所建立的模型,还讨论了微孔几何参数的变化对结构系统振动特性的影响。

Abstract

In this paper, a vibration analysis model of fiber-metal laminated plates (FMLPs) with microporous-viscoelastic layers was established. The expressions of elastic moduli of the microporous-viscoelastic material with two-dimensional regular micropore distribution was derived based on the relationship between elastic moduli and density of porous materials. The displacement fields of the metal layers and fiber layers were expressed by using the classic laminate theory, and the Reddy’s higher-order shear deformation theory was adopted to describe the displacement field of the microporous-viscoelastic layers for consideration of its shear deformation. Furthermore, on the basis of the Rayleigh-Ritz method, the complex modulus method, the strain energy method and the mode superposition approach, the natural frequencies, damping characteristics and vibration responses in time and frequency domains of the structural system subjected to impulse excitation were solved. Finally, a self-prepared FMLP specimen with a microporous-viscoelastic layer, whose micropore diameter and spacing are 0.5mm and 2mm, was used as the research object to conduct an experimental validation. The comparison between the theoretical and experimental results shows that the maximum calculation errors of the first three natural frequencies, damping ratios and response peaks are less than 4.5%, 9.7% and 7.5%, respectively, which verifies the correctness of the proposed model. In addition, based on the established model, the influence of geometry parameters associated with the micropores on the structural vibration characteristics were also discussed.

关键词

微孔粘弹性芯层 / 纤维金属混杂层合板 / 二维规则分布微孔 / 振动响应 / 阻尼特性

Key words

microporous-viscoelastic layers / fiber-metal laminated plates / two-dimensional regular distributed micropores / vibration response / damping characteristics

引用本文

导出引用
姜世杰1,2,王子恒1,2,于长帅1,2,3,任旭辉1,2,王昕彤1,2,王相平4,韩清凯1,2,李晖1,2,4. 带有微孔粘弹性芯层的纤维金属混杂层合板振动分析模型[J]. 振动与冲击, 2022, 41(9): 59-65
JIANG Shijie1,2, WANG Ziheng1,2, YU Changshuai1,2,3, REN Xuhui1,2 WANG Xintong1,2, WANG Xiangping4, HAN Qingkai1,2, LI Hui1,2,4. Vibration analysis model of fiber-metal laminated plates with microporous viscoelastic  layer[J]. Journal of Vibration and Shock, 2022, 41(9): 59-65

参考文献

[1] Shooshtari A, Razavi S. A closed form solution for linear and nonlinear free vibrations of composite and fiber metal laminated rectangular plates[J]. Composite Structures, 2010, 92(11):2663-2675.
[2] 李瑞,陈秀华,刘沛禹. TI-C纤维金属层压板自由振动试验和数值分析[J]. 复合材料学报, 2016, 33(5):1064-1071.
LI Rui, Chen X, Liu P. Tests and numerical analyses on free vibration of Ti-C fiber metal laminates[J]. Acta Materiae Compositae Sinica, 2016, 33(5):1064-1071(in Chinese).
[3] Liebig W V, Sessner V, Weidenmann K A, et al. Numerical and experimental investigations of the damping behaviour of hybrid CFRP-elastomer-metal laminates[J]. Composite Structures, 2018, 202:1109-1113.
[4] Xu Z, Gao Z, Zhao S, et al. A nonlinear vibration model of fiber metal laminated thin plate with amplitude dependent property[J]. Applied Acoustics, 2020, 164, 107268.
[5] Yu Y, Shen H S. A comparison of nonlinear vibration and bending of hybrid CNTRC/metal laminated plates with positive and negative Poisson’s ratios[J]. International Journal of Mechanical Sciences, 2020, 183, 105790.
[6] 张浩驰,宋文萍. 飞机机体噪声降噪方法研究进展[J]. 噪声与振动控制, 2008, 28(2):69-72.
ZHANG Hao-chi, Song W. Research on Airframe Noise Analysis and Reduction Methods[J]. Noise and Vibration Control, 2008, 28(2):69-72(in Chinese).
[7] Li Y, Wang X, Zhang D. Control strategies for aircraft airframe noise reduction[J]. Chinese Journal of Aeronautics, 2013, 26(2):249-260.
[8] Filippone A. Aircraft noise prediction[J]. Progress in Aerospace Sciences, 2014, 68(8):27-63.
[9] 赖余东. 蜂窝体胞尺寸对夹芯板性能的影响研究[D]. 南昌:南昌航空大学, 2012.
LAI Yu-dong. Effects of honeycomb cell size on performances of sandwich panels[D]. Nanchang: Nanchang Hangkong University, 2011(in Chinese).
[10] 任树伟,辛锋先,卢天健. 蜂窝层芯夹层板结构振动与传声特性研究[J]. 力学学报, 2013(03):349-358.
REN Shu-wei, XIN Feng-xian, LU Tian-jian. Vibroacoustic performance of simply supported honeycomb sandwich panels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013(03):349-358(in Chinese).
[11] Xiao D, Mu L, Zhao G. The influence of correlating material parameters of gradient foam core on free vibration of sandwich panel[J]. Composites Part B, 2015, 77:153-161.
[12] 邸馗,茅献彪. 对边简支负泊松比蜂窝夹层板的弯曲自由振动[J]. 复合材料学报, 2016, 33(4):910-920.
DI Kui, MAO Xian-biao. Free flexural vibration of honeycomb sandwich plate with negative Poisson’s ratio simply supported on opposite edges[J]. Acta Materiae Compositae Sinica, 2016, 33(4):910-920(in Chinese).
[13] Heshmati M, Daneshmand F. A study on the vibrational properties of weight-efficient plates made of material with functionally graded porosity[J]. Composite Structures, 2018, 200:229-238.
[14] Li Q, Wu D, Chen X, et al. Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation[J]. International Journal of Mechanical Sciences, 2018, 148:596-610.
[15] Yurddaska M, Ozmen U, Kir M, et al. The effect of foam properties on vibration response of curved sandwich composite panels[J]. Composite Structures, 2018, 183:278-285.
[16] Zeng S, Wang B L, Wang K F. Nonlinear vibration of piezoelectric sandwich nanoplate with a functionally graded porous core with consideration of flexoelectric effect[J]. Composite Structures, 2018, 207:340-351.
[17] Zhu C, Fang X, Liu J, et al. Smart control of large amplitude vibration of porous piezoelectric conical sandwich panels resting on nonlinear elastic foundation[J]. Composite Structures, 246:112384.
[18] Meiche N E, Tounsi T A, Ziane N, et al. A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate[J]. International Journal of Mechanical Sciences, 2011, 53(4):237-247.
[19] Mahi A, Bedia E A A, Tounsi A. A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates[J]. Applied Mathematical Modelling, 2015, 39(9):2489-2508.
[20] Ashby M F, Evans A, Fleck N A, et al. Metal foams: a design guide[J]. Applied Mechanics Reviews, 2012, 23(6):119-119.
[21] 李晖,孙伟,许卓,等. 纤维增强复合薄板振动测试与分析方法[M]. 北京:机械工业出版社,2019:78-79.
LI Hui, SUN Wei, XU Zhuo, et al. Vibration test and analysis methods of fiber-reinforced composite thin plates[M]. Beijing: China Machine Press, 2019:78-79(in Chinese).
[22] 邢誉峰,刘波. 板壳自由振动问题的精确解[M]. 北京:科学出版社, 2015: 199-201
XING Yu-bo, LIU Bo. Exact solution of free vibrations of plates and shells[M]. Beijing: Science Press, 2015: 199-201(in Chinese).
[23] Li H, Xue P, Guan Z, et al. A new nonlinear vibration model of fiber-reinforced composite thin plate with amplitude-dependent property[J]. Nonlinear Dynamics, 2018, 94:2219-2241.
[24] 李晖,吴腾飞,许卓,等. 基于激光无损扫描的纤维增强复合材料参数测试仪研发[J]. 东北大学学报(自然科学版), 2019, 40(06):841-846.
LI Hui, WU Teng-fei, XU Zhuo, et al. Development of a fiber-Reinforced composite material parameter tester based on laser non-destructive scanning[J]. Journal of Northeastern University Natural Science, 2019, 40(06):841-846(in Chinese).

PDF(1428 KB)

175

Accesses

0

Citation

Detail

段落导航
相关文章

/