基于无迹变换的结构载荷/参数联合识别的GDF法

王婷1,万志敏1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 75-80.

PDF(1317 KB)
PDF(1317 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (9) : 75-80.
论文

基于无迹变换的结构载荷/参数联合识别的GDF法

  • 王婷1,万志敏1,2
作者信息 +

GDF-UT algorithm for joint identification of structural loads/parameters

  • WANG Ting1, WAN Zhimin1,2
Author information +
文章历史 +

摘要

结构动态载荷/参数联合识别是近些年结构动力学领域的研究热点,比如作者提出的EGDF算法。不过EGDF算法的思想是基于扩展卡尔曼滤波(EKF)的一阶线性化近似来处理系统中的非线性,影响识别精度。考虑到无迹变换能够有效地处理系统非线性问题,本文引入无迹变换,应用模态缩减法,将传统GDF法进行改进,形成了GDF-UT法。另外,为了缓解GDF法中的载荷位移识别信号的虚假低频漂移现象,应用应变和加速度测量信号的融合策略拓展GDF-UT算法。以平面桁架结构为数值仿真对象,验证了本文算法的有效性,相比于EGDF算法,本文方法精度更高。

Abstract

There have been some research works focusing on simultaneous identification of structural loads and uncertain parameters in recent years. Among them, the extended GDF (EGDF) method presented by the authors has the ability for the dual identification. However, the foundation of EGDF is basing on the EKF algorithm, in which the first-order Taylor approximation is adopted for dealing with the system non-linearization. It has been demonstrated that the Unscented Transform (UT) has more accuracy than the EKF algorithm. In order to improve the identification precision, the UT is used for modifying the traditional GDF algorithm to become the GDF-UT algorithm together with the modal reduction strategy. Additionally, the strategy data fusion of the acceleration measurements and strain measurements is adopted for restraining the so-called low-frequency drifts of identified loads and displacements. A numerical example of a planar truss was conducted to validate the effectiveness of the proposed method.

关键词

载荷识别 / 参数识别 / GDF法 / 无迹变换 / 数据融合

Key words

load identification / parameter identification / the GDF algorithm / Unscented Transform / data fusion

引用本文

导出引用
王婷1,万志敏1,2. 基于无迹变换的结构载荷/参数联合识别的GDF法[J]. 振动与冲击, 2022, 41(9): 75-80
WANG Ting1, WAN Zhimin1,2. GDF-UT algorithm for joint identification of structural loads/parameters[J]. Journal of Vibration and Shock, 2022, 41(9): 75-80

参考文献

[1] Khalil M, Sarkar A, Afhikari S, et al. The estimation of time-invariant parameters of noisy nonlinear oscillatory systems [J]. Journal of Sound and Vibration, 2015, 344: 81-100.
[2] Huang J, Li D, Zhang C, Li H. Improved Kalman filter damage detection approach based on lp regularization [J]. Structural Control and Health Monitoring, 2019,26,e2424: 1-22.
[3] 张方,秦远田. 工程结构动载荷识别方法[M]. 北京:国防工业出版社, 2011.
    (Zhang Fang,Qin Yuan-tian. Structural dynamic force identification methods in engineering [M]. Beijing: National Defense Industry Press, 2011.)
[4] 潘楚东,余岭,刘焕林,骆紫薇. 考虑初始条件影响的移动载荷识别稀疏正则化方法[J]. 振动工程学院, 2018,31(5):734-743.
PAN Chudong,YU Ling,LIU Huanlin, et al. Sparse regularization based moving force identification under unknown initial conditions[J]. Journal of  Vibration Engineering,2018,31(5):734-743.
[5] Yang JN, Pan S, Huang H. An adaptive extended Kalman filter for structural damage identifications II: unknown inputs [J]. Structural Control and Health Monitoring, 2007, 14(3): 497-521.
[6] Lei Y, Jiang Y, Xu Z. Structural damage detection with limited input and output measurement signals [J]. Mechanical Systems and Signal Processing, 2012, 28: 229-243.
[7] Azam SE, Chatzi E, Papadimitriou C. A dual Kalman filter approach for state estimation via output-only acceleration measurements [J]. Mechanical Systems and Signal Processing, 2015, 60-61: 866-886.
[8] Azam SE, Dertimanis V, Chatzi E, Papadimitriou C. Output-only schemes for joint input-state-parameter estimation of linear systems, in:
UNCECOMP 2015–1st ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering, Crete, Greece, 2015,
pp. 497–510.
[9] Dertimanis V, Azam SE, Chatzi E, Papadimitriou C. Output-only fatigue prediction of uncertain steel structures, in: EWSHM 2016–8th
European Workshop On Structural Health Monitoring, Bilbao, Spain, 2016.
[10] Dertimanis V, Chatzi E, Eftekhar Azam S, et al. Input-state-parameter estimation of structural systems from limited output information [J]. Mechanical Systems and Signal Processing, 2019, 126:711-746.
[11] Naets F, Croes J, Desmet W. An online coupled state/input/parameter estimation approach for structural dynamics [J]. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 1167-1188.
[12] Gillijns S, De Moor B. Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough [J]. Automatica, 2007, 43: 934-937.
[13] Wan Z, Wang T, Li L, et al. A novel coupled state/input/parameter identification method for linear structural systems [J]. Shock and Vibration, 2018, 2018: 1-15.
[14] 万志敏,王婷,曹健等. 融合应变响应的结构载荷/参数联合识别的EGDF法[J]. 机械设计与制造, 2020.12录用.
    (Wan Zhi-min, Wang Ting, Cao Jian, et al. Structural Dynamic Load And Parameter Identification Based on The EGDF Algorithm And Strain Measurements [J]. Machinery Design and Manufacture, 2020.12 Accept. )
[15] 万志敏, 王婷,李霖等. 基于GDF的结构载荷及参数联合识别的实时方法[J].振动与冲击, 2019, 38(13): 158-162.
(Wan Zhi-min, Wang Ting, Li Lin, et al. Real-time Method For Structural Load And Parameters’ Joint Identification Based On GDF Method [J], Journal Of Vibration and Shock, 2019, 38(13): 158-162.)
[16] Julier SJ, Uhlmann JK, and Durrant-Whyte HF. A new method for the nonlinear transformation of means and covariances in filters and estimators [J], IEEE Trans. Automatic Control, 2000, 45(3): 477-482.
[17] Julier SJ, Uhlmann JK. Unscented filtering and nonlinear estimation [J]. Proceeding of IEEE, 2004, 92(3): 401-422.
[18] Zhang X, Multi-sensing and multi-scale monitoring of long-span suspension bridges [D]. The Ph.D thesis, The Hong Kong Polytechnic University, 2013.

PDF(1317 KB)

Accesses

Citation

Detail

段落导航
相关文章

/