门式钢桥塔涡激振动特性及机理研究

雷伟1,2,王骑1,2,廖海黎1,2,李志国1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 1-8.

PDF(2272 KB)
PDF(2272 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 1-8.
论文

门式钢桥塔涡激振动特性及机理研究

  • 雷伟1,2,王骑1,2,廖海黎1,2,李志国1,2
作者信息 +

Vortex-induced vibration characteristics and mechanisms of portal steel bridge tower

  • LEI Wei1,2,WANG Qi1,2,LIAO Haili1,2,LI Zhiguo1,2
Author information +
文章历史 +

摘要

钢桥塔是一种高耸细柔结构,对风荷载十分敏感,易发生涡激振动(vortex-induced vibrations, VIVs)。为研究某高度为217 m钢桥塔的涡激振动性能,开展了1:100缩尺比下的自立状态气弹模型风洞试验。试验结果表明,0°-30°风向角下,在低风速区间发生了两塔柱同相涡振,在高风速区间发生了反相涡振。其中,同相和反相涡振的最不利风向角分别为0°和10°,塔柱同相顺风向位移和反相扭转角分别为609.5 mm和4.3°。进一步地,通过计算流体力学(computational fluid dynamics, CFD)方法研究了两类涡振的发生机理。数值模拟结果表明,两塔柱附近旋涡交替脱落的频率与桥塔的基阶自振频率接近,由此在塔柱两侧产生的周期性压力差使得桥塔发生同相和反相涡振。本文的研究结果和结论可为同类型钢桥塔的抗风设计提供一定参考。

Abstract

The steel bridge tower is one kind of tall and slender structure which is highly sensitive to wind loads and prone to vortex-induced vibrations (VIVs). To investigate the VIV characteristics of a 217-meter-high steel bridge tower, 1:100 scale free-standing aeroelastic model wind tunnel tests were conducted. The experimental results show that in-phase VIVs occur in the low wind speed ranges, and out-of-phase VIVs occur in the high wind speed ranges at the wind directions range of 0° - 30°. The most unfavorable wind directions of in-phase and out-of-phase VIVs are 0° and 10°, respectively. In-phase along-wind displacement and out-of-phase torsion angle are 609.5 mm and 4.3°, respectively. Furthermore, the VIV triggering mechanisms were studied by computational fluid dynamics (CFD). The numerical simulation results show that the frequency of alternating vortex shedding near the two tower columns is close to the fundamental natural frequency, and the periodic pressure difference generated by this phenomenon leads to in-phase and out-of-phase VIVs. The findings and conclusions of this study provide some reference for the wind-resistant design of similar steel bridge towers.

关键词

涡激振动 / 钢桥塔 / 风洞试验 / 数值模拟

Key words

vortex-induced vibrations / steel bridge tower / wind tunnel tests / numerical simulations

引用本文

导出引用
雷伟1,2,王骑1,2,廖海黎1,2,李志国1,2. 门式钢桥塔涡激振动特性及机理研究[J]. 振动与冲击, 2024, 43(10): 1-8
LEI Wei1,2,WANG Qi1,2,LIAO Haili1,2,LI Zhiguo1,2. Vortex-induced vibration characteristics and mechanisms of portal steel bridge tower[J]. Journal of Vibration and Shock, 2024, 43(10): 1-8

参考文献

[1] 王春生, 王茜, 俞欣, 等. 钢桥塔节段局部稳定试验 [J]. 中国公路学报, 2009, 22(06): 74-81. WANG Chunsheng, WANG, Qian, YU Xin, et al. Experiment on local buckling of steel bridge tower segment [J]. China Journal of Highway and Transport, 2009, 22(06): 74-81. [2] SHEN Y F, WANG C Q, YAN A G, et al. Experimental investigation on the vortex-induced vibration of an arch steel bridge tower [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2023, 233: 105291. [3] SIRINGORINGO D M, FUJINO Y. Observed along-wind vibration of a suspension bridge tower [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 103: 107-121. [4] MA C M, LIU Y Z, YEUNG N, et al. Experimental study of across-wind aerodynamic behavior of a bridge tower [J]. Journal of Bridge Engineering, 2019, 24(2): 04018116. [5] 王浩, 李爱群, 焦常科. 桥塔风效应对大跨度悬索桥抖振响应的影响 [J]. 振动与冲击, 2010, 29(08): 103-106+123+245. WANG Hao, LI Aiqun, JIAO Changke. Bridge tower wind effects on buffeting response of long-span suspension bridges [J]. Journal of Vibration and Shock, 2010, 29(08): 103-106+123+245. [6] ZHANG C H, CAO D K, YOU W J, et al. Fatigue failure of welded details in steel bridge pylons [J]. Engineering Failure Analysis, 2021, 127: 105530. [7] TAKEUCHI T. Effects of geometrical shape on vortex-induced oscillations of bridge tower [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 33(1): 359-368. [8] MATSUMOTO M, ISHIZAKI H, MATSUOKA C, et al. Aerodynamic effects of the angle of attack on a rectangular prism [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 77-78: 531-542. [9] LAROSE G L, FALCO M, CIGADA A. Aeroelastic response of the towers for the proposed bridge over stretto di messina [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 57(2): 363-373. [10] 唐浩俊, 李永乐, 胡朋. 串列双塔柱风荷载及涡振性能研究 [J]. 工程力学, 2013, 30(01): 378-383. TANG Haojun, LI Yongle, HU Peng. Wind loads and vortex-induced vibration of two tower columns in tandem arrangement [J]. Engineering Mechanics, 2013, 30(01): 378-383. [11] 李永乐, 廖海黎, 李佳圣, 等. 大跨度斜拉桥钢桥塔基于涡振的气动选型及驰振性能风洞试验研究 [J]. 实验流体力学, 2012, 26(01): 50-54. LI Yongle, LIAO Haili, LI Jiasheng, et al. Vortex-induced vibration based aerodynamic optimization and galloping characteristics of steel pylon in long span cable-stayed bridge by wind tunnel test [J]. Journal of Experiments in Fluid Mechanics, 2012, 26(01): 50-54. [12] 葛耀君, 丁志斌, 赵林. 缆索承重桥梁桥塔自立状态涡激共振及其控制 [J]. 同济大学学报(自然科学版), 2007(08): 1008-1012. GE Yaojun, DING Zhibin, ZHAO Lin. Vortex-induced vibration and reduction of free-standing pylons of cable-supported bridges [J]. Journal of Tongji University (Natural Science), 2007(08): 1008-1012. [13] 徐刚, 王靖夫, 任文敏, 等. 施工中大桥桥塔的tmd减振研究 [J]. 工程力学, 2003(06): 106-110. XU Gang, WANG Jingfu, REN Wenmin, et al. Reduction of vibration during construction of bridgetowers by TMD [J]. Engineering Mechanics, 2003(06): 106-110. [14] 王文熙, 杨志林, 华旭刚, 等. 摆式碰撞双重调谐质量阻尼器减振性能研究 [J]. 中国公路学报, 2022, 35(07): 154-163. WANG Wenxi, YANG Zhilin, HUA Xugang, et al. Control performance of pendulum pounding double tuned mass damper under various excitations [J]. China Journal of Highway and Transport, 2022, 35(07): 154-163. [15] 王中文, 朱宏平, 廖海黎, 等. 钢桥塔裸塔状态涡激振动的tld减振方法研究 [J]. 华中科技大学学报(城市科学版), 2009, 26(02): 9-11+15. WANG Zhongwen, ZHU Hongping, LIAO Haili, et al. Vortex-induced vibration reduction of steel free-standing tower using tuned liquid damper [J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2009, 26(02): 9-11+15. [16] 王新荣, 顾明. 角部处理的二维方柱风压分布特性的试验研究 [J]. 土木工程学报, 2016, 49(07): 79-88. WANG Xinrong, GU Ming. Experimental study on wind pressure distributions of 2-D square prisms with various corner treatments [J]. China Civil Engineering Journal, 2016, 49(07): 79-88. [17] TAMURA T, MIYAGI T. The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83(1): 135-145. [18] TAMURA T, MIYAGI T, KITAGISHI T. Numerical prediction of unsteady pressures on a square cylinder with various corner shapes [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 531-542. [19] 张亮亮, 吴蕊恒, 倪志军, 等. 全风向角下二维切角方形桥塔气动措施数值模拟 [J]. 土木与环境工程学报(中英文), 2019, 41(02): 116-121. ZHANG Liangliang, WU Ruiheng, NI Zhijun, et al. Numerical simulation on aerodynamic measures of 2D-corner-cutoff square cylinder under all yaw wind angles [J]. Journal of Civil and Environmental Engineering, 2019, 41(02): 116-121. [20] 朱乐东, 张宏杰, 张海. 钢桥塔涡振气动控制措施研究 [J]. 振动工程学报, 2011, 24(06): 585-589. ZHU Ledong, ZHANG Hongjie, ZHANG Hai. Aerodynamic mitigation measures for vortex-induced vibration of steel tower [J]. Journal of Vibration Engineering, 2011, 24(06): 585-589. [21] 许福友, 丁威, 姜峰, 等. 大跨度桥梁涡激振动研究进展与展望 [J]. 振动与冲击, 2010, 29(10): 40-49+249. XU Fuyou, DING Wei, JIANG Feng, et al. Development and prospect of study on vortex-induced vibration of long-span bridges [J]. Journal of Vibration and Shock, 2010, 29(10): 40-49+249. [22] 公路桥梁抗风设计规范:JTG/T 3360-01—2018[S]. 北京:人民交通出版社, 2018. [23] 李加武, 张国强, 张波. 钢桥塔涡激共振振幅允许值确定研究 [J]. 中国公路学报, 2014, 27(03): 45-50. LI Jiawu, ZHANG Guoqiang, ZHANG Bo. Study on determination of allowable amplitude of vortex-induced resonance of steel bridge towers [J]. China Journal of Highway and Transport, 2014, 27(03): 45-50. [24] 靖洪淼, 廖海黎, 周强, 等. 一种山区峡谷桥址区风场特性数值模拟方法 [J]. 振动与冲击, 2019, 38(16): 200-207. JING Hongmiao, LIAO Haili, ZHOU Qiang, et al. A numerical simulation method for wind field characteristics of mountainous valley at bridge site [J]. Journal of Vibration and Shock, 2019, 38(16): 200-207. [25] 刘志文, 江智俊, 黎晓刚, 等. 流线型钢箱梁涡激振动机理与气动控制措施 [J]. 中国公路学报, 2022, 35(11): 133-146. LIU Zhiwen, JIANG Junzhi, LI Xiaogang, et al. Study on mechanism and aerodynamic control measures for vortex-induced vibration of a streamlined-box steel girder [J]. China Journal of Highway and Transport, 2022, 35(11): 133-146. [26] 张伟, 葛耀君. 方柱绕流粒子图像测速试验与数值模拟 [J]. 同济大学学报(自然科学版), 2009, 37(07): 857-861+892. ZHANG Wei, GE Yaojun. Particle image velocimetry study and numerical simulation of turbulent near wake of square cylinder [J]. Journal of Tongji University (Natural Science), 2009, 37(07): 857-861+892.

PDF(2272 KB)

599

Accesses

0

Citation

Detail

段落导航
相关文章

/