基于SFLA优化变分模态提取的滚动轴承故障诊断

张怀彬1,陈志刚1,2,杨远鹏1,王衍学1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 132-139.

PDF(4029 KB)
PDF(4029 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 132-139.
论文

基于SFLA优化变分模态提取的滚动轴承故障诊断

  • 张怀彬1,陈志刚1,2,杨远鹏1,王衍学1
作者信息 +

Fault diagnosis of rolling bearings based on sfla optimized variational mode extraction

  • ZHANG Huaibin1,CHEN Zhigang1,2,YANG Yuanpeng1,WANG Yanxue1
Author information +
文章历史 +

摘要

为解决变分模态提取(variational mode extraction, VME)在分解轴承故障信号过程中近似中心频率和惩罚因子的选择过于依赖专家经验的问题,提出混合蛙跳算法(shuffled frog leaping algorithm, SFLA)与VME相结合的滚动轴承故障诊断方法。首先,为解决单一指标作为目标函数提取特征时信息不全面的问题,结合信息熵(information entropy, IE)、包络谱峭度和相关系数建立新的参数优化指标—KIC;然后,将KIC的极小值作为SFLA的目标函数自适应地选取VME期望模态的中心频率和惩罚因子;最后,通过包络解调分析期望模态进行故障诊断。仿真信号与轴承试验台相关数据集的分析结果表明,所提出的SFLA-VME方法能够准确地提取出期望模态并诊断轴承故障。

Abstract

In order to solve problems that the selection of approximate center frequency and penalty factor in variational mode extraction (VME) depends too much on experts’ experience, a rolling bearing fault diagnosis method based on shuffled frog leaping algorithm (SFLA) and VME was proposed. Firstly, in order to solve problems of incomplete information when using a single index as an objective function to extract features, a new parameter optimization index-KIC was established with combining information entropy(IE), envelope spectral kurtosis and correlation coefficient. Then, the minimum value of KIC was used as the objective function of SFLA to adaptively select the approximate center frequency and penalty factor expected modes of VME. Finally, expected modes were analyzed with envelope demodulation for fault diagnosis. The analysis results of simulation signals and the related data sets of the bearing test-bed show that the proposed SFLA-VME method can accurately extract the desired mode and diagnosis of the bearing fault.

关键词

滚动轴承 / 变分模态提取 / 混合蛙跳算法 / 包络谱峭度 / 信息熵

Key words

rolling bearing / variational mode extraction / shuffled frog leaping algorithm / envelope spectral kurtosis / information entropy

引用本文

导出引用
张怀彬1,陈志刚1,2,杨远鹏1,王衍学1. 基于SFLA优化变分模态提取的滚动轴承故障诊断[J]. 振动与冲击, 2024, 43(10): 132-139
ZHANG Huaibin1,CHEN Zhigang1,2,YANG Yuanpeng1,WANG Yanxue1. Fault diagnosis of rolling bearings based on sfla optimized variational mode extraction[J]. Journal of Vibration and Shock, 2024, 43(10): 132-139

参考文献

[1] 谷然,陈捷,洪荣晶,等. 基于改进自适应变分模态分解的滚动轴承微弱故障诊断[J]. 振动与冲击,2020, 39(08): 1-7+22. GU Ran, CHEN Jie, HONG Rongjing, et al. Early fault diagnosis of rolling bearings based on adaptive variational mode decomposition and the Teager energy operator[J]. Journal of Vibration and Shock, 2020, 39(08): 1-7+22. [2] 王衍学. 机械故障监测诊断的若干新方法及其应用研究[D]. 西安: 西安交通大学,2009. [3] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971): 903–995. [4] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. [5] 李翠省,廖英英,刘永强. 基于EEMD和参数自适应VMD的高速列车轮对轴承故障诊断[J]. 振动与冲击,2022, 41(01): 68-77. LI Cuixing, LIAO Yingying, LIU Yongqiang. Fault diagnosis of wheelset bearing of high-speed train based on EEMD and parameter adaptive VMD[J]. Journal of Vibration and Shock, 2022, 41(01): 68-77. [6] NAZARI M, SAKHAEI S M. Variational mode extraction: a new efficient method to derive respiratory signals from ECG [J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22(4): 1059-1067. [7] 俞惠惠,郑近德,潘海洋,等. 基于自适应变分模态提取的低速重载滚动轴承故障诊断方法[J]. 振动与冲击,2022, 41(11): 65-71+113. YU Huihui, ZHENG Jinde, PAN Haiyang, et al. Fault diagnosis method of low speed and heavy load rolling bearing based on adaptive variational mode extraction[J]. Journal of Vibration and Shock, 2022, 41(11): 65-71+113. [8] 郭远晶,金晓航,魏燕定,等. S变换引导变分模态提取的旋转机械故障诊断方法[J]. 振动工程学报,2022, 35(05): 1289-1298. GUO Yuanjing, JIN Xiaohang, WEI Yanding, et al. Fault diagnosis method of rotating machinery using variational mode extraction guided by S transform[J]. Journal of Vibration Engineering, 2022, 35(05): 1289-1298. [9] ZHONG X, XIA T, MEI Q. A Parameter-Adaptive VME method based on particle swarm optimization for bearing fault diagnosis[J]. Experimental Techniques, 2023, 47: 435–448. [10] 崔文华,刘晓冰,王伟,等. 混合蛙跳算法研究综述[J]. 控制与决策,2012, 27(04): 481-486+493. CUI Wenhua, LIU Xiaobing, WANG Wei, et al. Survey on shuffled frog leaping algorithm[J]. Control and Decision, 2012, 27(04): 481-486+493. [11] WANG L, JI S, JI N. Comparison of Support Vector Machine-Based Techniques for Detection of Bearing Faults[J]. Shock and Vibration, 2018, 60: 1–13. [12] 李益兵,马建波,江丽. 基于SFLA改进卷积神经网络的滚动轴承故障诊断[J]. 振动与冲击,2020, 39(24): 187-193. LI Yibing, MA Jianbo, JIANG Li. Fault diagnosis of rolling bearing based on an improved convolutional neural network using SFLA[J]. Journal of Vibration and Shock, 2020, 39(24): 187-193. [13] 陈志刚,姜云龙,王莹莹,等. TKEO和SET在轴承故障诊断中的应用[J]. 电子测量技术,2022, 45(10): 155-160. CHEN Zhigang, JIANG Yunlong, WANG Yingying, et al. Application of TKEO and SET in bearing fault diagnosis[J]. Electronic Measurement Technology, 2022, 45(10): 155-160. [14] 赵杰,陈志刚,王衍学,等. 基于辛几何提取变换的轴承故障诊断研究[J]. 机电工程,2021, 38(06): 719-725. ZHAO Jie, CHEN Zhigang, WANG Yanxue, et al. Bearing fault diagnosis based on symplectic geometry extraction transformation[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(06): 719-725. [15] 唐贵基,王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报,2015, 49(05): 73-81. TANG Guiji, WANG Xiaolong. Parameter optimization variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi’an Jiaotong University, 2015, 49(05): 73-81. [16] LI C, LIU Y, LIAO Y, et. A VME method based on the convergent tendency of VMD and its application in multi-fault diagnosis of rolling bearings[J], Measurement, 2022, 198: 1-15. [17] PANG B, NAZARI M, TANG G. Recursive variational mode extraction and its application in rolling bearing fault diagnosis, Mechanical Systems and Signal Processing[J], 2022, 165: 1-22.

PDF(4029 KB)

Accesses

Citation

Detail

段落导航
相关文章

/