声学结构单元传递函数的建立方法及应用

张本熙1,王晓明1,梅玉林2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 174-184.

PDF(2915 KB)
PDF(2915 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 174-184.
论文

声学结构单元传递函数的建立方法及应用

  • 张本熙1,王晓明1,梅玉林2
作者信息 +

Method for establishing the transfer function of acoustic structural units and its application

  • ZHANG Benxi1,WANG Xiaoming1,MEI Yulin2
Author information +
文章历史 +

摘要

基于三维有限元的时域仿真法,探讨了建立声学结构单元传递函数模型的一般方法。所建立的声学单元传递函数由结构参数高精度表达,能简化一般声学结构设计问题的流程。首先,建立了两种声学结构单元,仿真其幅频特性,并结合实验测量,验证幅频特性曲线的准确性,而后基于幅频特性曲线拟合传递函数,选择精度最高的零极点匹配方案,确定拟合传递函数的最优型式。结果表明,匹配7个极点和无零点来拟合膨胀腔单元的传递函数,匹配2个极点和2个零点来拟合亥姆霍兹共振腔单元的传递函数,拟合精度最高。然后,分析声学单元的结构参数对幅频特性的影响,并基于拟合传递函数的最优型式,通过数值仿真和拟合计算,建立由结构参数表达的声学结构单元传递函数模型。最后,构造了由膨胀腔和亥姆霍兹共振腔构成的复合声学结构,通过单元传递函数的组合计算,获得声学结构的总传递函数,并与COMSOL仿真结果比较,验证所建立声学单元传递函数模型的正确性,它能准确描述声学结构的传递损失特性。

Abstract

The transfer function model of acoustic structural unit is established through the time-domain simulation method of three-dimensional finite element analysis, and is accurately expressed as the function of structural parameters. The transfer function representation can simplify the design process of acoustic structure. First, two acoustic structural units are established, and their amplitude-frequency characteristics are simulated. And meanwhile, the simulated amplitude-frequency characteristics are verified by experimental measurements. Next, based on the amplitude-frequency characteristics, transfer functions of the two structural units are fit by adopting different zero-pole matching schemes. The results show that the fitting accuracy is the highest when matching 7 poles and no zero to fit the transfer function of the expansion chamber unit, and matching 2 poles and 2 zeros to fit the transfer function of the Helmholtz resonator unit. Then, the influence of the structural parameters of the acoustic unit on the amplitude-frequency characteristics is analyzed. Subsequently, based on the high accuracy form of the fitting function, the transfer function model of the acoustic structural unit is established by numerical simulation and fitting calculation. Finally, a composite acoustic structure composed of an expansion chamber and a Helmholtz resonator is constructed, and its transfer function is calculated based on the transfer function models of the units. The results of COMSOL and transfer function model are compared to verify the established unit transfer function models.

关键词

时域 / 声学结构 / 膨胀腔 / 亥姆霍兹共振腔 / 传递函数

Key words

time domain / acoustic structure / expansion chamber / Helmholtz resonator / transfer function

引用本文

导出引用
张本熙1,王晓明1,梅玉林2. 声学结构单元传递函数的建立方法及应用[J]. 振动与冲击, 2024, 43(10): 174-184
ZHANG Benxi1,WANG Xiaoming1,MEI Yulin2. Method for establishing the transfer function of acoustic structural units and its application[J]. Journal of Vibration and Shock, 2024, 43(10): 174-184

参考文献

[1] 卢五弟,王良秀,胡斌. 船用抗性排气熄火消声器的声学特性[J]. 船舶工程, 2022, 44(02): 69-73. LU Wu-di, WANG Liang-xiu, Hu Bin. Acoustic characteristics of reactive exhaust silencer with spark arrestor in marine[J]. Ship Engineering, 2022, 44(02): 69-73. [2] 陈国强,刘俊龙,胡亮等.某柴油机排气消声器低频噪声优化控制[J].内燃机与动力装置,2022,39(05):43-48. Chen Guo-qiang,Liu Jun-long,Hu liang,et al. Optimization control of low frequency exhaust noise of diesel engine muffler[J]. Internal Combustion Engine & Powerplant,2022,39(05):43-48. [3] 甘振鹏,杨东.带冷却气流的亥姆霍兹共振器的声类比模型[J].力学学报,2022, 54(03):577-587. Gan Zhen-peng,Yang Dong. An Acoustic Analogy Model For Helmholtz Resonators With Cooling Bias Flow[J]. Chinese Journal of Theoretical and Applied Mechanics,2022,54(03):577-587. [4] 季振林. 消声器声学理论与设计[M]. 北京: 科学出版社, 2015. JI Zhen-lin. Acoustical Theory and Design of Mufflers[M]. Beijing: Science Press, 2015. [5] 韩宗斌,刘淑玉,王伟伟. 消声元件在汽车进气系统设计中的运用[J]. 大众科技, 2017, 19(08): 63-65. HAN Zong-bin, LIU Shu-yu, WANG Wei-wei. Acoustic element use for in auto intake system[J]. Popular Science & Technology, 2017, 19(08): 63-65. [6] 施昭林,杨悦. 汽车排气尾管气流噪音分析及优化[J]. 内燃机与配件, 2020,No.309(09): 53-56. SHI Zhao-lin, YANG Yue. The Analysis and Optimization of the Vehicle Exhaust Tail Pipe Noise[J]. Internal Combustion Engine & Parts, 2020, No.309(09): 53-56. [7] 谢有浩,许磊,李志刚. 浅谈汽车排气消声器的选型设计[J]. 企业技术开发, 2013, 32(07): 55-56. XIE You-hao, XU Lei, LI Zhi-gang. Selection and design of automobile exhaust muffler[J]. Technological Development of Enterprise, 2013, 32(07): 55-56. [8] 杨德银. 赫尔姆兹消音器在汽车排气系统中的应用[J]. 合肥工业大学学报(自然科学版), 2019, 42(02): 167-171. Yang De-yin. Application of Helmholtz muffler in vehicle exhaust system[J]. Journal of Hefei University of Technology(Natural Science), 2019, 42(02): 167-171. [9] 魏小宝,何柳. 基于声品质提升的汽车消声器结构研究[J]. 现代机械, 2022, No.227(01): 31-35. WEI Xiao-bao, HE Liu. Study on muffler structure based on sound quality improvement[J]. Modern Machinery, 2022, No.227(01): 31-35. [10] 刘晨,季振林,郭小林,等. 汽车排气消声器结构形式对压力损失的影响[J]. 汽车工程, 2008, 30(12): 1113-1116. LIU Chen, JI Zhen-lin, GUO Xiao-lin, et al. Effects of Configurations on Pressure Losses in Automotive Exhaust Muffler[J]. Automotive Engineering, 2008, 30(12): 1113-1116. [11] 韩悦. 腔体消声器在喷流噪声控制中的应用研究[D]. 浙江大学, 2022. HAN Yue.Application research on cavity muffler in jet noise control[D].Zhejiang University, 2022. [12] 马大猷. 亥姆霍兹共鸣器[J]. 声学技术, 2002(Z1): 2-3. MAA Dah-you.Helmholtz resonator[J].Technical Acoustics, 2002(Z1):2-3. [13] XIAO-LING G, TUO X, ZHONG-XU K, et al. Study on sound insulation performance of the periodic arrangement expansion chambers structure with built-in micro-perforated panel[J]. Applied Acoustics, 2020, 161(C). [14] 徐航手,季振林,康钟绪. 抗性消声器传递损失预测的三维时域计算方法[J]. 振动与冲击, 2010, 29(04): 107-110. XU Hang-shou, JI Zhen-lin, KANG Zhong-xu. Three-dimensional time-domain computational approach for predicting transmission loss of reactive silencers[J]. Journal of Vibration and Shock, 2010,29(04):107-110. [15] 洪志恒. 螺旋型亥姆霍兹共振消声器及吸收体设计与声学特性研究[D]. 哈尔滨理工大学, 2022. HONG Zhi-heng.Spiral Helmholtz resonance muffler and absorber design and acoustic characteristics research[D].Harbin University of Science and Technology, 2020. [16] 康钟绪,郑四发,连小珉,等. 膨胀腔消声器声学仿真的一维修正方法[J]. 声学学报, 2011,36(06): 652-657. KANG Zhong-xu, ZHENG Si-fa, LIAN Xiao-min, et al. Corrected one-dimensional approach for the acoustic simulation of expansion chamber silencer[J]. Acta Acustica, 2011,36(06):652-657. [17] 邓兆祥,向飞,李沛然,等. 扩张比对扩张式消声器压力损失影响的分析[J]. 汽车工程, 2011, 33(03): 231-235. DENG Zhao-xiang, XIANG Fei, LI Pei-ran, et al. Analysis on the effects of expansion ratio on the pressure loss of expansion muffler[J]. Automotive Engineering, 2011,33(03):231-235. [18] 徐磊,刘正士,毕嵘. 结构参数对扩张式消声器消声性能影响的数值分析[J]. 汽车科技, 2010(01): 26-29. XU Lei, LIU Zheng-shi, Bi Rong.The numerical analysis on the effect of structural parameters upon the acoustic attenuation performance of expansion mufflers[J]. Auto Sci-Tech, 2010(01): 26-29. [19] RAFIQUE F, WU J H, LIU C R, et al. Transmission Loss analysis of a simple expansion chamber muffler with extended inlet and outlet combined with inhomogeneous micro-perforated panel (iMPP)[J]. APPLIED ACOUSTICS, 2022, 194. [20] 方忠甫,刘正士. 形状参数对消声器性能影响的数值分析[J]. 噪声与振动控制, 2006(03): 96-98. FANG Zhong-pu, LIU Zheng-shi.The numerical analysis of muffler about the influence of it′sshape parameters[J]. Noise and Vibration Control, 2006(03): 96-98. [21] 范钱旺,沈颖刚,翁家庆,等. 赫姆霍兹共振消声器结构参数对消声性能的影响[J]. 噪声与振动控制, 2007(04): 116-119. FANG Qian-wang,SHEN Ying-gang, WENG Jia-qing, et al. Influence of Helmholtz resonant silencer design parameter to noise elimination performance[J].Noise and Vibration Control, 2007(04):116-119. [22] 刘海涛,郑四发,连小珉,等. 锥形颈部赫姆霍兹共振器声学性能预测[J]. 声学学报, 2014, 39(03): 353-359. LIU Hai-tao, ZHENG Si-fa LIAN Xiao-min, et al. The acoustic performance prediction of the Helmholtz resonator with a conical neck[J].Acta Acustica, 2014,39(03):353-359. [23] 安君,吕海峰,陈鹏,等. 亥姆霍兹消声器自适应控制方法研究[J]. 声学技术, 2019, 38(02): 188-193. AN Jun, LYU Hai-feng, CHEN Peng, et al. Research on adaptive control method of Helmholtz muffler[J]. Technical Acoustics, 2019,38(02):188-193. [24] 张京明,刘文文,崔双双. 赫姆霍兹消声器共振腔结构形状对消声性能的影响[J]. 四川兵工学报, 2010, 31(09): 79-82. ZHANG Jing-ming, LIU Wen-wen, CUI Shuang-shuang. Influence of the resonant cavity shape of Helmholtz muffler on the noise elimination performance[J].Journal of Ordnance Equipment Engineering, 2010, 31(09): 79-82. [25] JENA D P, DANDSENA J, JAYAKUMARI V G. Demonstration of effective acoustic properties of different configurations of Helmholtz resonators[J]. Applied acoustics, 2019, 155(Dec.): 371-382. [26] WU D Z, ZHANG N, MAK C M, et al. Hybrid noise control using multiple Helmholtz resonator arrays[J]. APPLIED ACOUSTICS, 2019, 143: 31-37. [27] 唐景洪,刘政,张课微,等. 并联消声单元整体消声器性能分析[J]. 中国科技论文, 2022, 17(02): 141-149. TANG Jing-hong, LIU Zheng, ZHANG Ke-wei, et al. Performance analysis of muffler with parallels silencing units[J].ChinaSciencepaper, 2022, 17(02):141-149. [28] 杨帆,李丽君. 亥姆霍兹共振腔不同连接方式的传递损失与特性分析[J]. 现代制造工程, 2018(05): 31-37. YANG Fan, LI Li-jun.Transmission loss and characteristic analysis of double Helmholtz resonators with different connection modes[J].Modern Manufacturing Engineering, 2018(05): 31-37. [29] YOUNG C I J, CROCKER M J. Prediction of transmission loss in mufflers by the finite−element method[J]. The Journal of the Acoustical Society of America, 1975, 57(1): 144-148. [30] 陈永新,陈剑,饶建渊. 汽车排气消声器的消声性能研究[J]. 汽车工程, 2009, 31(04): 381-384. CHEN Yong-xin, CHEN Jian, RAO Jian-yuan. A Study on the Noise Attenuation Performance of Automotive Exhaust Muffle[J]. Automotive Engineering, 2009, 31(04): 381-384. [31] MUNJAL M L. Acoustics of Ducts and Mufflers.[M]. New York: Wiley-Interscience, 1987. [32] 张昊,郭立新,范威. 不同数值模拟方法预测消声器传递损失的比较研究[J]. 机械设计与制造, 2020(09): 100-103. ZHANG Hao, GUO Li-xin, FAN Wei. Comparative study of different numerical simulation approaches for the prediction of muffler transmission loss[J].Machinery Design & Manufacture, 2020(09): 100-103. [33] 马大猷. 现代声学理论基础[M]. 北京: 科学出版社, 2004. MAA Dah-you. Fundamentals of Modern Acoustics[M]. Beijing: Science Press, 2004. [34] 郭宝龙. 工程信号与系统[M]. 北京: 高等教育出版社, 2014. GUO Bao-long. Engineering signal and system[M]. Beijing: Higher Education Press, 2014. [35] 曹倩倩,李舜酩,胡伊贤,等. 结构参数对共振式消声器共振频率影响的修正[J]. 机械设计与制造, 2014(05): 56-59. CAO Qian-qian, LI Shun-ming, Hu Yi-xian, et al. Correction on resonance frequency of resonant silencer having different structural parameters[J]. Machinery Design & Manufacture, 2014(05): 56-59.

PDF(2915 KB)

Accesses

Citation

Detail

段落导航
相关文章

/