基于压缩感知的缺失机械振动信号重构新方法

郭俊锋1,胡婧怡1,王智明1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 197-204.

PDF(1629 KB)
PDF(1629 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 197-204.
论文

基于压缩感知的缺失机械振动信号重构新方法

  • 郭俊锋1,胡婧怡1,王智明1
作者信息 +

Novel method for missing mechanical vibration signal reconstruction based on compressed sensing

  • GUO Junfeng1,HU Jingyi1,WANG Zhiming1
Author information +
文章历史 +

摘要

针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(Adaptive Quadratic Proximity-Alternating Direction Method of Multipliers, AQ-ADMM)的压缩感知缺失信号重构方法。AQ-ADMM算法在经典ADMM算法迭代过程中添加二次临近项,且能够自适应选取惩罚参数。首先在数据中心建立信号参考数据库用于构造初始字典,然后将K-奇异值分解(K-Singular Value Decomposition, K-SVD)字典学习算法和AQ-ADMM算法结合重构缺失信号。对仿真信号和两种真实轴承信号数据集添加高斯白噪声后作为样本,实验结果表明当信号压缩率在50%~70%时,所提方法性能指标明显优于其它传统方法,在重构信号的同时实现了对含缺失数据机械振动信号的快速精确修复。

Abstract

In order to address the issue of missing vibration signal data in real-time monitoring of industrial machinery due to uncontrollable factors, a Compressed sensing missing signal reconstruction method based on the Adaptive Quadratic Proximity-Alternating Direction Method of Multipliers (AQ-ADMM) was proposed. The AQ-ADMM algorithm introduced a quadratic proximity term into the classic ADMM iterative process and adaptively selected penalty parameters. First, a signal reference database was established at the data center for creating an initial dictionary. Then, the missing signals were repaired using a reconstruction method based on the K-Singular Value Decomposition (K-SVD) dictionary learning algorithm and AQ-ADMM. Gaussian white noise was added to simulated signals and two real bearing signal datasets to serve as samples, the experimental results demonstrate that the proposed method exhibits significantly better performance indicators than other traditional methods when the signal compression ratio ranges from 50% to 70%. It achieves fast and accurate recovery of missing data signals while reconstructing the signals.

关键词

压缩感知 / 缺失信号 / AQ-ADMM / K-SVD / OMP

Key words

Compressed Sensing / Missing Signal / AQ-ADMM / K-SVD / OMP

引用本文

导出引用
郭俊锋1,胡婧怡1,王智明1. 基于压缩感知的缺失机械振动信号重构新方法[J]. 振动与冲击, 2024, 43(10): 197-204
GUO Junfeng1,HU Jingyi1,WANG Zhiming1. Novel method for missing mechanical vibration signal reconstruction based on compressed sensing[J]. Journal of Vibration and Shock, 2024, 43(10): 197-204

参考文献

[1] Lei YG, Yang B, Jiang XW, et al. Applications of machine learning to machine fault diagnosis: A review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138:106587. [2] Donoho DL. Compressed sensing[J]. IEEE Transactions on information theory, 2006, 52(4):1289-1306. [3] Candès EJ, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on information theory, 2006, 52(2):489-509. [4] Rani M, Dhok SB, Deshmukh RB. A systematic review of compressive sensing: Concepts, implementations and applications[J]. IEEE access, 2018, 6:4875-4894. [5] 孟宗, 石颖, 潘作舟, 等. 自适应分块前向后向分段正交匹配追踪在重构滚动轴承故障信号中应用[J]. 机械工程学报, 2020, v.56(09):105-115. [6] 王海明, 刘永强, 廖英英. 基于快速谱峭度和正交匹配追踪算法的轴承故障诊断方法[J]. 振动与冲击, 2020, 39(19):7. [7] Zhou P, He L, Yi C, et al. Impulses Recovery Technique Based on High Oscillation Region Detection and Shifted Rank-1 Reconstruction—Its Application to Bearing Fault Detection[J]. IEEE Sensors Journal, 2022, 22. [8] 李琼, 李志农, 周世健, 等. 基于变分贝叶斯平行因子分解的缺失信号的恢复[J]. 仪器仪表学报, 2022, 43(3). [9] 刘素娟, 崔程凯, 郑丽丽, 等. 基于压缩感知的贪婪类重构算法原子识别策略综述[J]. 电子与信息学报, 2023, 45(1):361-370. [10] Mallat SG, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on signal processing, 1993, 41(12):3397-3415. [11] Tropp JA, Gilbert AC. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on information theory, 2007, 53(12):4655-4666. [12] Chen SS, Donoho DL, Saunders MA. Atomic decomposition by basis pursuit[J]. SIAM review, 2001, 43(1):129-159. [13] 史加荣, 王丹, 尚凡华, 等. 随机梯度下降算法研究进展[J]. 自动化学报, 2021, 47(9):2103-2119. [14] Jia XX, Kanzow C, Mehlitz P, et al. An augmented Lagrangian method for optimization problems with structured geometric constraints[J]. Mathematical Programming, 2022:1-51. [15] 陈善雄, 熊海灵, 廖剑伟, 等. 一种基于CGLS和LSQR的联合优化的匹配追踪算法[J]. 自动化学报, 2018, 44(007):1293-1303. [16] Karmitsa N, Taheri S, Bagirov A, et al. Missing value imputation via clusterwise linear regression[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(4):1889-1901. [17] Ding Y, Ren P, Zhao H, et al. Structural health monitoring of a high-speed railway bridge: five years review and lessons learned[J]. Smart Struct. Syst, 2018, 21(5):695-703. [18] 陆化普, 屈闻聪, 孙智源. 基于 SG 滤波的交通流故障数据识别与修复算法[J]. 土木工程学报, 2015, (5):123-128. [19] 余路, 曲建岭, 高峰, 等. 基于过完备字典的缺失振动数据压缩感知重构算法[J]. 系统工程与电子技术, 2017, 39(8):1871-1877. [20] Aharon M, Elad M, Bruckstein A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on signal processing, 2006, 54(11):4311-4322. [21] Yang H, Lin H, Ding K. Sliding window denoising K-Singular Value Decomposition and its application on rolling bearing impact fault diagnosis[J]. Journal of Sound and vibration, 2018, 421:205-219. [22] 李帅永, 毛维培, 程振华, 等. 基于 VMD 和 K-SVD 字典学习的供水管道泄漏振动信号压缩感知方法[J]. 仪器仪表学报, 2020, 41(3):49-60. [23] Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine learning, 2011, 3(1):1-122. [24] Liu HX, Song B, Qin H, et al. An adaptive-ADMM algorithm with support and signal value detection for compressed sensing[J]. IEEE Signal Processing Letters, 2013, 20(4):315-318. [25] Zhang YL, Li X, Zhao G, et al. Signal reconstruction of compressed sensing based on alternating direction method of multipliers[J]. Circuits, Systems, and Signal Processing, 2020, 39(1):307-323. [26] 李慧, 韩立国, 张良, 等. 基于字典学习和 ADMM 的地震数据重建[J]. 石油物探, 2019, 58(3):419-426. [27] Do TT, Gan L, Nguyen N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. 2008 42nd Asilomar conference on signals, systems and computers, 2008:581-587. [28] Pan ZZ, Lin ZP, Zheng YJ, et al. Fast Fault Diagnosis Method Of Rolling Bearings In Multi-Sensor Measurement Enviroment[C]. ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022:81-85. [29] 郭俊锋, 石斌, 魏兴春, 等. 基于 K-SVD 字典学习算法的稀疏表示振动信号压缩测量重构方法[J]. 机械工程学报, 2018, 54(7):97-106. [30] Loparo K. Case western reserve university bearing data center[J]. Bearings Vibration Data Sets, Case Western Reserve University, 2012:22-28. [31] Wang B, Lei YG, Li NP, et al. A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings[J]. IEEE Transactions on Reliability, 2018:1-12.

PDF(1629 KB)

Accesses

Citation

Detail

段落导航
相关文章

/