大跨度单层柔性光伏支架结构气动阻尼的试验研究

徐海巍1,李俊龙2,何旭辉3,杜航1,丁焜炀1,楼文娟1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 21-29.

PDF(1656 KB)
PDF(1656 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 21-29.
论文

大跨度单层柔性光伏支架结构气动阻尼的试验研究

  • 徐海巍1,李俊龙2,何旭辉3,杜航1,丁焜炀1,楼文娟1
作者信息 +

Aero-elastic experiment investigation on the aerodynamic damping of large-span single-layer cable-suspended photovoltaic modules

  • XU Haiwei1,LI Junlong2,HE Xuhui3,DU Hang1,DING Kunyang1,LOU Wenjuan1
Author information +
文章历史 +

摘要

大跨光伏支架结构轻柔,在风荷载作用下易产生显著气动效应。为研究该类结构的气动阻尼特征,对不同风速和张力工况下两种典型倾角(0°和10°)的大跨度柔性光伏支架结构开展气弹风洞试验。基于气弹模型风洞试验结果,分别利用经验小波变换(EWT)和变分模态分解(VMD)结合改进的随机减量方法(RDT)识别得到了柔性光伏支架结构在不同风速风向、组件倾角和拉索预张力下的气动阻尼比。研究结果表明:气动阻尼对风向角的变化较为敏感。当组件倾斜铺设时(10°倾角),大跨光伏结构气动阻尼在180°迎风向时会出现负值。张力增加可能导致高风速下平铺组件的气动阻尼比显著降低。气动阻尼比随风速的增加整体呈减小趋势,低风速下基本为正值,而高风速下可能出现负气动阻尼。不同方法识别出的气动阻尼比结果存在一定的差异,但反映出的气动阻尼的变化特征具有一致性。

Abstract

The large-span photovoltaic support structure is light and flexible, and is vulnerable to wind-induced aeroelastic effects. In order to study the aerodynamic damping characteristics of this structure, an aeroelastic model wind tunnel test was carried out to a typical large-span flexible photovoltaic support structure with module inclination of 0° and 10° under different wind speeds and pretensions. Based on the aeroelastic test results, empirical wavelet transform (EWT) and variational modal decomposition (VMD) combined with the improved random reduction method (RDT) were used to identify the aerodynamic damping ratio of photovoltaic structure under different wind speeds and directions, module inclinations, and cable pretensions. The study results show that the aerodynamic damping ratio is sensitive to the change of wind direction angle. When the module has an inclination of 10°, the aerodynamic damping of a large-span photovoltaic structure shows a negative value under the windward wind azimuth of 180°. Increase of pretension may lead to decrease of aerodynamic damping ratio of a horizontally installed module under a high wind speed. The aerodynamic damping ratio generally decreases with the increase of wind speed, it basically shows positive values under low wind speeds but may become negative under high wind speeds. Although the aerodynamic damping ratios identified by different methods were not the same, both of them show consistent variation pattern of aerodynamic damping.

关键词

变分模态分解 / 经验小波变换 / 气弹试验 / 气动阻尼 / 柔性光伏支架结构

Key words

Variational modal decomposition / Empirical wavelet transform / Aeroelastic test / Aerodynamic damping / Cable-supported photovoltaic module

引用本文

导出引用
徐海巍1,李俊龙2,何旭辉3,杜航1,丁焜炀1,楼文娟1. 大跨度单层柔性光伏支架结构气动阻尼的试验研究[J]. 振动与冲击, 2024, 43(10): 21-29
XU Haiwei1,LI Junlong2,HE Xuhui3,DU Hang1,DING Kunyang1,LOU Wenjuan1. Aero-elastic experiment investigation on the aerodynamic damping of large-span single-layer cable-suspended photovoltaic modules[J]. Journal of Vibration and Shock, 2024, 43(10): 21-29

参考文献

[1] Leh Sung Law, Jong Hyun Kim, Willey Y.H. Liew, et al. An approach based on wavelet packet decomposition and Hilbert–Huang transform (WPD–HHT) for spindle bearings condition monitoring[J]. Mechanical Systems and Signal Processing, 2012, 33,197-211. [2] 杨望灿, 张培林, 王怀光,等. 基于EEMD的多尺度模糊熵的齿轮故障诊断[J]. 振动与冲击, 2015, 34(14):163-167+187 YANG Wang-can, ZHANG Pei-lin, WANG Huai-guang, et al. Gear fault diagnosis based on multiscale fuzzy entropy of EEMD[J]. Journal of vibration and shock, 2015, 34(14): 163-167+187 [3] 刘长良, 武英杰, 甄成刚. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报, 2015, 35(13):3358-3365. LIU Chang-liang, WU Ying-jie, ZHEN Cheng-gang. Rolling Bearing Fault Diagnosis Based on Variational Mode Decomposition and Fuzzy C Means Clustering[J]. Proceedings of the CSEE, 2015, 35(13):3358-3365 [4] 李双江, 辛景舟, 付雷,等. 基于VMD-KLD的桥梁挠度监测数据温度效应分离方法[J]. 振动与冲击, 2022, 41(05):105-113. LI Shuang-jiang, XIN Jing-zhou, FU lei, et al. Temperature effect separation method of bridge deflection monitoring data based on VMD-KLD[J]. Journal of vibration and shock, 2022, 41(05):105-113 [5] 王茜, 田慕琴, 宋建成,等. 基于经验小波变换的振动信号特征量提取[J]. 振动与冲击, 2021, 40(16):261-266. WANG Qian, TIAN Mu-qin, SONG Jian-cheng, et al. Feature extraction of vibration signals based on empirical wavelet transform[J]. Journal of vibration and shock, 2021, 40(16):261-266 [6] 蔡康, 郅伦海, 李秋胜,等.环境风激励下超高层建筑模态参数识别[J]. 应用力学学报, 2021, 38(02):465-473. CAI Kang, ZHI Lun-hai, LI Qiu-sheng, et al. Modal parameter identification of super tall buildings under ambient wind excitation[J]. Chinese journal of applied mechanics, 2021, 38(02):465-473 [7] Dominique, Zosso, Konstantin, et al. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing A Publication of the IEEE Signal Processing Society, 2014,62(3): 531-544. [8] 顾文景, 周丽. 改进VMD算法在颤振试验信号模态参数辨识中的应用[J]. 振动工程学报, 2021, 34(02):292-300. GU Wen-jing, ZHOU Li. Modal parameter identification based on optimized variational mode decomposion and its application in signal processing of flutter test[J]. Journal of vibration engineering, 2021, 34(02):292-300 [9] 方国富, 黄文龙, 王海军,等. 基于VMD的水电站厂房结构模态参数识别研究[J]. 海河水利, 2021(06):101-104+114. FANG Guo-fu, HUANG Wen-long, WANG Hai-jun, et al. Research on modal parameter identification of hydropower house structure based on VMD[J]. Hehai water resources, 021(06):101-104+114 [10] 孙猛猛, 郅伦海. 基于VMD的建筑结构模态参数识别[J]. 振动与冲击, 2020, 39(01):175-183+190 SUN Meng-meng, ZHI Lun-hai. Modal parametric identification of building structures based on VMD [J]. Journal of vibration and shock, 2020, 39(01):175-183+190 [11] 殷红, 董康立, 彭珍瑞. 基于VMD-SSI的结构模态参数识别[J]. 振动与冲击, 2020, 39(10): 81-91. YIN Hong, DONG Kang-li, PENG Zhen-rui. Structural modal parameter identification based on VMD-SSI[J]. Journal of vibration and shock, 2020, 39(10): 81-91 [12] Gilles J. Empirical wavelet transform[J]. IEEE transactions on signal processing, 2013, 61(16): 3999-4010. [13] 陈学军, 杨永明. 基于经验小波变换的振动信号分析[J]. 太阳能学报, 2017, 38(02):339-346. CHEN Xue-jun, YANG Yong-ming. Analysis of vibration signals based on empirical wavelet transform[J]. Acta energiae solaris sinica, 2017, 38(02):339-346 [14] 万熹, 黄天立, 陈华鹏. 环境激励下基于改进经验小波变换的土木工程结构模态参数识别[J]. 振动工程学报, 2020, 33(02): 219-230. WAN Qi, HUANG Tian-li, CHEN Hua-peng. Improved empiricial wavelet trabsform for modal parameters identification of civil engineering structures under ambient[J]. Journal of vibration engineering, 2020, 33(02): 219-230 [15] 马文勇,柴晓兵,马成成. 柔性支撑光伏组件风荷载影响因 素试验研究[J]. 太阳能学报, 2021, 42(11): 10-18. MA Weng-yong, CAI Xiao-bin, MA Cheng-cheng. Experimental study on wind load influencing factors of flexible supported photovoltaic modules[J]. Acta Energiae Solaris Sinica, 2021, 42(11): 10-18. [16] 马文勇,柴晓兵,赵怀宇,等. 基于偏心风荷载分布模型的柔性支撑索分配系数研究[J]. 振动与冲击, 2021, 40(12): 305-310. MA Weng-yong, CAI Xiao-bin, ZHAO Huai-yu, et al. A study on distribution coefficient of a flexible photovoltaic support cable based on an eccentric moment wind load distribution model [J]. Journal of Vibration and Shock, 2021, 40(12): 305-310. [17] 谢丹,范军. 预应力柔性光伏支承体系风振分析[J]. 建筑结构, 2021, 51(21): 15-18. XIE Dan, FAN Jun.Wind vibration analysis of prestressed flexible photovoltaic support system[J]. Building Structure, 2021, 51(21): 15-18. [18] 刘志超,带弹性抗风索的柔性光伏支架的受力性能[D].江苏省南京市:东南大学,2021:11-55. LIU Zhi-chao, Mechanical performance of flexible photovoltaic support with elastic wind resistant cable[D]. Nanjing, Jiangsu Province: Southeast University,2021:11-55. [19] Xu-Hui He, Hao Ding, Hai-Quan Jing et al. Wind-induced vibration and its suppression of photovoltaic modules supported by suspension cables[J]. Journal of Wind Engineering & Industrial Aerodynamics.2020,206:104275. [20] YC Kim, Y Tamura, A Yoshinda et al. Experimental investigation of aerodynamic vibrations of solar wing system[J].Advances in Structural Engineering.2018,21(15):2217-2226. [21] 杜航,徐海巍,张跃龙,等. 大跨柔性光伏支架结构风压特性及风振响应[J]. 哈尔滨工业大学学报,2022,54(10):67-74. DU Hang, XU Hai-wei, ZHANG Yue-long, et al. Wind pressure characteristics and wind vibration response of long-span flexible photovoltaic support structure[J]. Journal of Harbin Institute of Technology, 2022,54(10):67-74. [22] 潘峰, 孙炳楠, 楼文娟. 基于Hilbert-Huang变换的大跨屋盖气动阻尼识别[J]. 浙江大学学报(工学版), 2007(01): 65-70. PAN Feng, SUN Bing-nan, LOU Wen-juan. Aerodynamic damping identification of long-span roof based on Hilbert-Huang transform[J]. Journal of Zhejiang University(Engineering Science), 2007(01): 65-70 [23] 黄铭枫, 吴承卉, 徐卿,等. 基于实测数据的某高层建筑结构动力参数和气动阻尼识别[J]. 振动与冲击, 2017, 36(10): 31-37+83. HUANG Ming-feng, WU Chen-hui, XU Qin, et al. Structural dynamic and aerodynamic parameters identification for a tall building with full-scale measurements[J]. Journal of vibration and shock, 2017, 36(10): 31-37+83 [24] 孙旭峰, 胡超. 脉动风作用下基于Hilbert-Huang变换的附加质量及气动阻尼识别[J]. 空气动力学学报, 2015, 33(04): 542-547. SUN Xu-feng, HU Chao. An identification study on the added mass and aerodynamic damping based on Hilbert-Huang Transform under the action of fluctuating wind[J]. Acta aerodynamica sinica, 2015, 33(04): 542-547 [25] 王济.MATLAB在振动信号处理中的应用[M].知识产权出版社,2006.

PDF(1656 KB)

Accesses

Citation

Detail

段落导航
相关文章

/