基于动态磨削过程仿真的凸轮轴高速磨削稳定性预测分析

刘涛1,2,邓朝晖3,姚齐水1,2,吕黎曙4,余江鸿1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 236-247.

PDF(2983 KB)
PDF(2983 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 236-247.
论文

基于动态磨削过程仿真的凸轮轴高速磨削稳定性预测分析

  • 刘涛1,2,邓朝晖3,姚齐水1,2,吕黎曙4,余江鸿1,2
作者信息 +

Prediction and analysis of non-circular grinding process stability based on dynamic grinding process simulation

  • LIU Tao1,2,DENG Zhaohui3,YAO Qishui1,2,L Lishu4,YU Jianghong1,2
Author information +
文章历史 +

摘要

磨削颤振是制约凸轮轴高效优质磨削最主要的因素之一。在分析凸轮轴磨削几何运动学特性的基础上,综合考虑时滞效应和砂轮-工件弹性退让机制推导了凸轮轴高速磨削动态磨削力计算方法,建立了多因素耦合的凸轮轴磨削动力学模型和凸轮轴动态磨削仿真模型。基于稳定性叶瓣图法和动态磨削过程仿真方法对凸轮轴高速磨削稳定性进行预测分析;开展实验验证了所提出模型和方法的正确性。最后,通过对动态磨削过程的变模态参数仿真,分析模态参数对凸轮轴高速磨削过程稳定性的影响。结果表明:增大系统刚度和阻尼、减小模态质量都可以改善磨削稳定性,获得更大的稳定磨削极限。

Abstract

Grinding chatter is one of the most important factors for restricting the efficient and high-quality grinding of camshaft. Based on the analysis of the geometric and kinematic characteristics of camshaft grinding, the calculation method of dynamic grinding force in high-speed grinding of camshaft is deduced considering the time delay effect and the elastic concession mechanism of grinding wheel-workpiece comprehensively, and the multi-factor coupling camshaft grinding dynamics model and camshaft dynamic grinding simulation model are established. Based on the stability lobe diagram method and dynamic grinding process simulation method, the high-speed grinding stability of camshaft is predicted and analyzed. Experiments are carried out to verify the correctness of the proposed model and method. Finally, the influence of modal parameters on the stability of camshaft high-speed grinding process is analyzed by simulating the variable modal parameters of dynamic grinding process. The results show that increasing the stiffness and damping of the process system and reducing the modal mass of the process system can improve the grinding stability and obtain a greater stable grinding limit.

关键词

非圆轮廓磨削 / 稳定性预测 / 磨削颤振 / 动态磨削仿真 / 凸轮轴

Key words

non-circular grinding / stability prediction / grinding chatter / dynamic grinding process simulation / camshaft

引用本文

导出引用
刘涛1,2,邓朝晖3,姚齐水1,2,吕黎曙4,余江鸿1,2. 基于动态磨削过程仿真的凸轮轴高速磨削稳定性预测分析[J]. 振动与冲击, 2024, 43(10): 236-247
LIU Tao1,2,DENG Zhaohui3,YAO Qishui1,2,L Lishu4,YU Jianghong1,2. Prediction and analysis of non-circular grinding process stability based on dynamic grinding process simulation[J]. Journal of Vibration and Shock, 2024, 43(10): 236-247

参考文献

[1] Wegener K, Bleicher F, Krajnik P, Hoffmeister H, Brecher C. Recent developments in grinding machines[J]. CIRP Annals, 2017,66(2):779-802. [2] 刘涛, 邓朝晖, 罗程耀, 吕黎曙, 李重阳, 万林林. 基于动态磨削深度的非圆轮廓高速磨削稳定性建模与分析[J]. 机械工程学报, 2021,57(15):264-274. Liu T, Deng Z H, Luo C Y, et al. Stability Modeling and Analysis of Non-circular High-speed Grinding with Consideration of Dynamic Grinding Depth [J]. Journal of Mechanical Engineering, 2021,57(15):264-274. [3] 蒋永翔, 王太勇, 黄国龙, 黄毅, 张莹. 外圆纵磨再生颤振稳定性理论及评价方法的研究[J]. 振动与冲击, 2008,27(12):61-63. Jiang Y X, Wang T Y, Huang G L, et al. Theory of regenerative chatter stability and evaluation method for cylingdrical traverse grinding[J]. Journal of vibration and shock, 2008,27(12):61-63. [4] Barrenetxea D, Mancisidor I, Beudaert X, Munoa J. Increased productivity in centerless grinding using inertial active dampers[J]. CIRP Annals, 2018,67(1):337-340. [5] Inasaki I, Karpuschewski B, Lee H S. Grinding Chatter – Origin and Suppression[J]. CIRP Annals, 2001,50(2):515-534. [6] Altintas Y, Weck M. Chatter Stability of Metal Cutting and Grinding[J]. CIRP Annals, 2004,53(2):619-642. [7] 卢晓红, 杨昆, 栾贻函, 侯鹏荣, 顾瀚. 薄壁铣削加工颤振稳定性研究综述[J]. 振动与冲击, 2021,40(08):50-61. Lu X, Yang K, Luan Y H, et al. A review on chatter stability in thin-wall milling [J]. Journal of vibration and shock, 2021,40(08):50-61. [8] Liu Z, Payre G. Stability analysis of doubly regenerative cylindrical grinding process[J]. Journal of Sound and Vibration, 2007,301(3):950-962. [9] Brian Rowe W. Rounding and stability in centreless grinding[J]. International Journal of Machine Tools and Manufacture, 2014,82-83:1-10. [10] Kim P, Jung J, Lee S, Seok J. Stability and bifurcation analyses of chatter vibrations in a nonlinear cylindrical traverse grinding process[J]. Journal of Sound and Vibration, 2013,332(15):3879-3896. [11] Yan Y, Xu J, Wiercigroch M. Regenerative and frictional chatter in plunge grinding[J]. Nonlinear Dynamics, 2016,86(1):283-307. [12] Tóth M, Sims N D, Curtis D. An alternative wheel regenerative mechanism in surface grinding: distributed grit dullness captured by specific energy waves[J]. Mechanical Systems and Signal Processing, 2022,162:107964. [13] 张氢, 陈文韬, 陈淼, 王玉琢, 郑大腾. 数控凸轮轴磨床颤振稳定性研究[J]. 湖南大学学报(自然科学版), 2020,47(02):45-52. Qing, Z, Chen W T, Chen M, et al.. Study on Cutting Chatter Stability of a Computerized Numerical Control Camshaft Grinder[J]. Journal of Hunan University Natural Sciences, , 2020,47(02):45-52. [14] Peng C, Wang L, Liao T W. A new method for the prediction of chatter stability lobes based on dynamic cutting force simulation model and support vector machine[J]. Journal of Sound and Vibration, 2015,354:118-131. [15] Li H, Shin Y C. A Time-Domain Dynamic Model for Chatter Prediction of Cylindrical Plunge Grinding Processes[J]. Journal of Manufacturing Science & Engineering, 2006,128(2):404-415. [16] Jung J, Kim P, Kim H, Seok J. Dynamic modeling and simulation of a nonlinear, non-autonomous grinding system considering spatially periodic waviness on workpiece surface[J]. Simulation Modelling Practice and Theory, 2015,57:88-99. [17] Jalili M M, Fazel R, Abootorabi M M. Simulation of chatter in plunge grinding process with structural and cutting force nonlinearities[J]. The International Journal of Advanced Manufacturing Technology, 2017,89(9-12):2863-2881. [18] 罗德龙, 邓朝晖, 刘涛, 佘帅龙, 罗程耀, 彭克立. 基于Simulink仿真的凸轮轴高速磨削稳定性判定[J]. 金刚石与磨料磨具工程, 2019,39(04):56-61. Luo D L, Deng Z H, Liu T, et al. High-speed grinding stability determination of camshaft based on Simulink simulation [J]. Diamond &Abrasives Engineering, 2019,39(04):56-61. [19] Cha K C, Wang N, Liao J Y. Stability analysis for the crankshaft grinding machine subjected to a variable-position worktable[J]. The International Journal of Advanced Manufacturing Technology, 2013,67(1-4):501-516. [20] 张舒, 徐鉴. 时滞耦合系统非线性动力学的研究进展[J]. 力学学报, 2017,49(03):565-587. Zhang S, Xu J. REVIEW ON NONLINEAR DYNAMICS IN SYSTEMS WITH COULPLING DELAYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 565-587. [21] 刘显波, 何恩元, 龙新华, 孟光. 时滞作用下切削系统的时频响应特性研究[J]. 振动与冲击, 2020,39(06):8-14. Liu X B, He E Y, Long X H, et al. Time and Frequency Domain Characteristics of a Cutting System with Time-Delay Effects [J]. Journal of vibration and shock, 2020,39(06):8-14. [22] Tang H, Deng Z H, Guo Y S, Qian J, Reynaerts D. Depth-of-cut errors in ELID surface grinding of zirconia-based ceramics[J]. International Journal of Machine Tools and Manufacture, 2015,88:34-41. [23] Patnaik Durgumahanti U S, Singh V, Venkateswara Rao P. A New Model for Grinding Force Prediction and Analysis[J]. International Journal of Machine Tools and Manufacture, 2010,50(3):231-240. [24] Liu T, Deng Z, Luo C, Li Z, Lv L, Zhuo R. Chatter detection in camshaft high-speed grinding process based on VMD parametric optimization[J]. Measurement, 2022,187:110133. [25] Liu T, Deng Z, Lv L, She S, Liu W, Luo C. Experimental Analysis of Process Parameter Effects on Vibrations in the High-Speed Grinding of a Camshaft[J]. Strojniški vestnik – Journal of Mechanical Engineering, 2020,66(3): 175-183.

PDF(2983 KB)

Accesses

Citation

Detail

段落导航
相关文章

/