基于结构声强法的离心式天然气压缩机橇座振动能量传递特性

王逢德1,马云腾2,罗佳琪3,刘冰1,肖文生2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 260-267.

PDF(2548 KB)
PDF(2548 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 260-267.
论文

基于结构声强法的离心式天然气压缩机橇座振动能量传递特性

  • 王逢德1,马云腾2,罗佳琪3,刘冰1,肖文生2
作者信息 +

Vibration energy transfer characteristics of a centrifugal compressor skid base based on the structural intensity method

  • WANG Fengde1,MA Yunteng2,LUO Jiaqi3,LIU Bing1,XIAO Wensheng2
Author information +
文章历史 +

摘要

海上橇装离心式天然气压缩机集成度高,易产生振动故障。为探究振动能量在压缩机橇座中的传递特性,降低振动控制成本,将结构声强法应用于橇装离心式压缩机的振动控制研究领域。综合运用自编程序与有限元工具建立了压缩机橇座结构声强场分析模型,结合数据可视化技术,提出了橇座结构声强分析及可视化方法。应用该方法求解并可视化了橇座的结构声强场,研究了橇座中振动能量的传递特性以及机械能与结构声强的定量关系,确定了极限工况下振动能量在橇座中的主要传递路径、振源和振汇。针对精密设备敏感区域,提出了振动控制措施。研究结果表明:压缩机安装区域的结构声强幅值最大,振动能量主要转化为橇座的运动能,振动能量主要沿着橇座宽度和高度方向发散式传递。所得研究成果,在工程领域可为压缩机橇振动控制提供支持,理论方面亦可为板梁复合结构振动能量传递特性研究提供依据。

Abstract

Offshore skid mounted centrifugal natural gas compressors are highly integrated and prone to vibration failures. In order to explore the transfer characteristics of vibration energy in compressor skid and reduce the cost of vibration control, the structural intensity method was applied to the research field of vibration control of skid-mounted reciprocating compressor. The acoustic intensity field analysis model of the skid base was established by using self-programming and finite element tools. Combined with data visualization technology, the acoustic intensity analysis and visualization method of the skid base was proposed. The method was applied to solve and visualize the structural acoustic intensity field of the skid base. The transfer characteristics of vibration energy in the skid base and the quantitative relationship between mechanical energy and structural acoustic intensity were studied, the main transfer path, vibration source and vibration manifold of vibration energy in the skid base under the extreme working conditions were revealed. Vibration control measures are proposed for sensitive area of precision equipment. The results show that maximum amplitude of structural sound intensity appears in the compressor installation area, the vibration energy is mainly converted into kinetic energy of the skid base,and the vibration energy is mainly transferred in a divergent manner along the width and height of the skid. The research results can support the vibration control of compressor skids in the engineering field and provide a basis for the study of vibration energy transfer characteristics of plate and beam composite structures in the theoretical aspect.

关键词

离心式天然气压缩机 / 橇座 / 结构声强法 / 振动能量 / 矢量场 / 可视化

Key words

centrifugal natural gas compressor / skid base / structural intensity method / vibration energy / vector field / visualization

引用本文

导出引用
王逢德1,马云腾2,罗佳琪3,刘冰1,肖文生2. 基于结构声强法的离心式天然气压缩机橇座振动能量传递特性[J]. 振动与冲击, 2024, 43(10): 260-267
WANG Fengde1,MA Yunteng2,LUO Jiaqi3,LIU Bing1,XIAO Wensheng2 . Vibration energy transfer characteristics of a centrifugal compressor skid base based on the structural intensity method[J]. Journal of Vibration and Shock, 2024, 43(10): 260-267

参考文献

[1] 马铭. 大型离心式压缩机组振动与控制研究 [D]. 大庆:东北石油大学,2019. [2] 朱建鲁,李玉星,王武昌,等. CO2预冷双氮膨胀天然气液化工艺的海上适应性分析 [J]. 天然气工业,2012,32(4): 89-95. ZHU Jianlu,LI Yuxing,WANG Wuchang,et al. Offshore adaptability of the dual nitrogen expander process with CO2 pre-cooling [J]. Natural Gas Industry,2012,32(4) : 89-95. [3] 王晓海,黄小玲.多轴多级离心式压缩机基础动力特性分析 [J]. 武汉大学学报(工学版),2021,54(2) : 130-134. WANG Xiaohai,Huang Xiaoling. An analysis of the dynamic characteristics of multi shaft and multi-stage centrifugal compressor foundation [J]. International Journal of Non-Linear Mechanics,2021,54(2) :130-134. [4] 刘雁,高宽,何浩,等. 基于多重分形的离心压缩机出口动态压力非线性特征研究及其在喘振识别中的应用 [J]. 振动与冲击,2021,40(1) :205-211,242. LIU Yan,GAO Kuan,HE Hao,et al. Nonlinear characteristics of centrifugal compressor outlet dynamic pressure based on multifractal and their application in surge identification [J]. Journal of Vibration and Shock,2021,40(1) :205-211,242. [5] 王帅,訾艳阳,何正嘉. 含裂纹离心压缩机叶轮结构的振动局部化 [J]. 振动与冲击,2017,36(6) :108-113. WANG Shuai,ZI Yanyang,HE Zhengjia. Vibration localization of cracked impellers of centrifugal compressors [J]. Journal of Vibration and Shock,2017,36(6) :108-113. [6] Meggitt J W R,Moorhouse A T,Wienen K,et al. A framework for the propagation of uncertainty in Transfer Path Analysis [J]. Journal of Sound and Vibration,2020,483(1) :1-29. [7] 蔡延年,于洪亮,闫锦,等. 玻璃纤维增强塑料夹层板振动能量流可视化研究 [J]. 振动与冲击,2020,39(6) :243-248. CAI Yannian,YU Hongliang,YAN Jin,et al. Vibration energy flow visualization of a glass fiber reinforced plastics sandwich panel [J]. Journal of Vibration and Shock,2020,39(6) :243-248. [8] 刘贵杰,闫茹,姚永凯,等. 推进器系统激励下水下航行器结构中功率流分布特性及优化设计研究 [J]. 振动与冲击,2014,33(19) :74-80. LIU Guijie,YAN Ru,YAO Yongkai,et al. AUV structure power flow distribution characteristics and hull optimization design under propulsive system excitation [J]. Journal of Vibration and Shock,2014,33(19) :74-80. [9] 行晓亮,王敏庆,宛敏红. 基于导纳功率流方法的动力吸振系统研究 [J]. 机械科学与技术,2008,27(1) :69-71. XING Xiaoliang,WANG Minqing,WAN Minhong. Study of a dynamic vibration absorber using mobility power flow method [J]. Mechanical Science and Technology for Aerospace Engineering,2008,27(1) :69-71. [10] 沈重,陈忠明. 基于有限元-统计能量分析混合法座舱噪声特性研究 [J]. 噪声与振动控制,2022,42(5) :200-203. SHEN Zhong,CHEN Zhongmin. Study on noise characteristics of airplane cockpits based on FEM-SEA hybrid method [J]. Noise and Vibration Control,2022,42(5) :200-203. [11] 尹忠俊,岳恒昌,陈兵,等. 基于统计能量法的排气管道系统的振动和噪声分析与研究 [J]. 振动与冲击,2010,29(2) :159-163. YIN Zhongjun,YUE Hengchang,CHEN Bing,et al. AUV structure power flow distribution characteristics and hull optimization design under propulsive system excitation [J]. Journal of Vibration and Shock,2010,29(2) :159-163. [12] Noiseux D U. Measurement of Power Flow in Uniform Beams and Plates [J]. Journal of the Acoustical Society of America,1970,47(1) :238-247. [13] 李凯,赵德有,黎胜. 结构振动声强法研究及应用 [J]. 应用声学,2010,29(5) :391-400. LI Kai,ZHAO Deyou,LI Sheng. Survey of structural vibration intensity methods [J]. Applied Acoustics,2010,29(5) :391-400. [14] Ma Y Q,Zhao Q J,Zhang K,et al. Analysis of instantaneous vibrational energy flow for an aero-engine dual-rotor-support-casing coupling system [J]. Journal of Engineering for Gas Turbines and Power,2020,142(5) :051011. [15] Saijyou K. Measurement of structural intensity using boundary element method-based nearfield acoustical holography [J]. Journal of the Acoustical Society of America,2007,121(6) :493-500. [16] Liu D,Havranek Z,Peters H,et al. Near-field acoustic holography and non-negative intensity for prediction of sound radiation [C]//Acoustics 2015,Hunter Valley,Australia. [17] Freschi A A,Pereira A K,Ahmida K M,et al. Analyzing the total structural intensity in beams using a homodyne laser Doppler vibrometer [J]. Shock and Vibration,2015,7(5) : 299-308. [18] Roozen N B,Guyader J L,Glorieux C. Measurement-based determination of the irrotational part of the structural intensity by means of test functional series expansion [J]. Journal of Sound and Vibration,2015,356 :168-180. [19] Keustermans W,Pires F,Greef D D,et al. Digital stroboscopic holographic interferometry for power flow measurements in acoustically driven membranes [C]// Proceedings of the 12th International A.I.VE.LA. Conference on Vibration Measurements by Laser and Noncontact Techniques: Advances and Applications. AIP Publishing LLC,28 June 2016. [20] Pires F,Muyshondt P G G,Keustermans W,et al. Structural intensity analysis of flat plates based on digital stroboscopic holography measurements [J]. Journal of Sound and Vibration,2018,482(2018) :169-178. [21] Gavri L,Pavi G. A Finite Element Method for Computation of Structural Intensity by the Normal Mode Approach [J]. Journal of Sound and Vibration,1993,164(1) :29-43. [22] Li Y J, Lai J C S. Prediction of surface mobility of a finite plate with uniform force excitation by structural intensity [J]. Applied Acoustics,2000,60 :371-383. [23] 马英群. 基于结构声强可视化的航空发动机转子-支承-机匣耦合系统振动能量传递特性研究 [D]. 北京: 中国科学院大学,2020. [24] 马英群,徐蒙,张锴,等. 基于结构声强法的机匣振动能量传递特性研究 [J]. 航空学报,2019,40(9) :222-938. MA Yingqun,XU Meng,ZHANG Kai,et al. Vibration energy transmission characteristics of casing based on structural intensity method [J]. Acta Aero-nautica et Astronautica Sinica,2019,40(9) :222-938. [25] Romano A J, Abraham P B, Williams E G. A Poynting vector formulation for thin shells and plates,and its application to structural intensity analysis and source localization. Part I:Theory [J]. Journal of the Acoustical Society of America,1998,87(3) :1166-1175. [26] 何鹏,向阳,周洋,等. 中低频激励下耦合板架振动能量分布与传递特性分析 [J]. 噪声与振动控制,2020,40(2) : 13-22. HE Peng,XIANG Yang,ZHOU Yang,et al. Vibration energy distribution and transfer characteristics of coupled plates under medium-low frequency excitation [J]. Noise and Vibration Control,2020,40(2) :13-22.

PDF(2548 KB)

Accesses

Citation

Detail

段落导航
相关文章

/