为了研究LYP225低屈服点钢锥形钢棒阻尼器(LYP-WHP)在剪切荷载作用下的滞回性能与疲劳性能,对两个LYP-WHP试件分别进行了滞回加载与疲劳加载试验。基于试验结果,采用混合强化本构模型,通过ABAQUS建立了12个LYP-WHP的足尺精细化数值模型,分别以阻尼器的内径、外径和耗能段长度为参数,研究以上参数对LYP-WHP在剪切荷载作用下LYP-WHP滞回性能的影响规律,推导了LYP-WHP的弹性刚度计算公式,并给出了初步确定LYP-WHP屈服力与屈服位移的方法,基于试验与数值分析结果,得到了LYP-WHP屈服后的刚度折减系数建议值。研究结果表明:在剪切位移下,LYP-WHP具有良好的滞回性能与疲劳性能;增大外径和内径可明显提高LYP-WHP的承载力、刚度和耗能能力,增大耗能段长度则会降低LYP-WHP的承载力、刚度和耗能能力;增大内径、外径使材料的利用率先增大后减小,增大耗能段长度则基本无影响;推导的LYP-WHP弹性刚度计算公式可以较为准确的计算LYP-WHP的弹性刚度;基于本文的分析结果,建议LYP-WHP的内径与外径比值取0.375~0.625,屈服后的刚度折减系数取0.11,得到了理论骨架曲线的计算式。
Abstract
In order to study the hysteresis and fatigue performance of LYP225 low yield point steel web hourglass pin damper (LYP-WHP) under shear loading, two LYP-WHP specimens were tested for hysteresis loading and fatigue loading respectively. Based on the experimental results, a Chaboche combined hardening model was used to establish 12 finite element models of LYP-WHP by ABAQUS, with the inner diameter, outer diameter and length of energy dissipation section of the damper as parameters, respectively, to study the influence law of the above parameters on the hysteresis performance of LYP-WHP under shear loading. The formula for calculating the elastic stiffness of LYP-WHP is derived, and a preliminary method for determining the yield force and yield displacement of LYP-WHP is given, and based on the results of experimental and numerical analysis, the proposed value of the stiffness discount factor of LYP-WHP after yielding is obtained. The research results show that LYP-WHP has good hysteresis and fatigue properties under shear displacement; Increasing the outer and inner diameters can significantly improve the load carrying capacity, stiffness and energy dissipation capacity of LYP-WHP, while increasing the length of the energy dissipation section will reduce the load carrying capacity, stiffness and energy dissipation capacity of LYP-WHP; Increasing the inner diameter and outer diameter makes the utilization of the material first increase and then decrease, and increasing the length of the energy-consuming section has little effect; the derived formula for calculating the elastic stiffness of LYP-WHP can calculate the elastic stiffness of LYP-WHP accurately; Based on the analysis results of this paper, it is suggested that the inner diameter to outer diameter ratio of LYP-WHP is taken as 0.375~0.625 and the stiffness reduction factor after yielding is taken as 0.11; the Bi-linearl skeleton curve is obtained.
关键词
低屈服点钢 /
锥形钢棒阻尼器 /
参数分析 /
滞回性能 /
疲劳性能
{{custom_keyword}} /
Key words
Low yield point steel /
Web hourglass pin damper /
Parameter analysis /
Hysteresis performance /
Fatigue performanc
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 周云. 金属耗能减震结构设计[M]. 武汉: 武汉理工大学出版社, 2006.
Zhouyun. Design of metallic energy dissipation and seismic mitigation structure[M]. Wuhan: Wuhan University of Technology Press, 2006.
[2] Tyler R G. Preliminary Test on An Energy Absorbing Element for Braced Structures under Earthquake Loading[J].Bulletin of The New Zealand National Society for Earthquake Engineering, 1983.16(3).
[3] Donatella C, Francesco T, Paolo B. Seismic protection of tuy medio rail way viaducts: design and shaking table rest of the seimic devices[C]/ /The 13th World Conference on Earthquake Engineering. Vancouer, Canada, 2004.
[4] 周云, 黄慧敏, 朱勇组合式双圆锥耗能器的设计与性能模拟分析[J]. 振动与冲击, 2012, 31(1): 131-139.
Zhou Yun, HUANG Hui-min, ZHU Yong. Design and FE Analysis for an assembled biconical energy dissipator (BED)[J]. JOURNAL OF VIBRATION AND SHOCK, 2012, 31(1): 131-139.
[5] BAIGUERA, MARCO, VASDRAVELLIS, GEORGE, KARAVASILIS, THEOD OREL. Dual seismic-resistant steel frame with high post-yield stiffness energy-dissipative braces for residual drift reduction[J]. Journal of Constructional Steel Research, 2016, 122(Jul.):198-212.
[6] VASDRAVELLIS, GEORGE, KARAVASI -LIS, THEODOREL, UYBRIAN. Design Rules, Experimental Evaluation,and Fracture Models for High-Strength and Stainless-Steel Hourglass Shape Energy Dissipation Devices[J]. Journal of Structural Engineering, 2014, 140(11): 4014087.1-4014087.14. DOI:10.1061/(ASCE)S T.1943-541X. 0001 014.
[7] GHORBANZADEH, BENYAMIN, BREG -O LI, GUIDO, VASDRAVELLIS, GEOR -GE, et al. Pilot experimental and numerical studies on a novel retrofit scheme for steel joints against progressive collapse[J]. Engineering structures, 2019, 200:109667.1- 109667.20.
[8] Vasileios C. Kamperidis and Theodore L. Karavasilis and George Vasdravellis. Self-centering steel column base with metallic energy dissipation devices[J]. Journal of Constructional Steel Research, 2018, 149:14-30.
[9] 王萌, 钱凤霞, 杨维国. 低屈服点LYP160钢材本构关系研究[J]. 建筑结构学报, 2017, 38(2): 55-62.
WANG Meng, QIAN Fengxia, YANG Weiguo. Constitutive behavior of low yield point steel LYP160[J]. Journal of Building Structures, 2017, 38(2): 55-62.
[10] 王萌, 钱凤霞, 杨维国, 等. 低屈服点钢材与Q345B和Q460D钢材本构关系对比研究[J]. 工程力学, 2017, 34(2): 60-68.
WANG Meng1, QIAN Feng-xia1, YANG Wei-guo, et al. COMPARISON STUDY ON CONSTITUTIVE RELATION- SHIP OF LOW YIELD POINT STEELS, Q345B STEEL AND Q460D STEEL[J]. ENGINEERING MECHANICS, 2017, 34(2): 60-68.
[11] 石文龙, 陶正华, 张福寿. 低屈服点钢研究进展与力学性能数据分析[J]. 地震工程与工程振动, 2021, 41(01): 175-183.
SHI Wenlong, TAO Zhenghua, ZHANG Fushou. Research progress and mechanical properties dataanalysis of low yield point steel[J]. EARTHQUAKE ENGINEERING AND ENGINEERING DYNA -MICS, 2021, 41(01): 175-183.
[12] 许立言. 低屈服点钢剪切型阻尼器的力学性能及理论模型研究[D]. 北京: 清华大学, 2017.
Xu Liyan. Research on Mechanical Behavior and Theoretical Model of Low-yield-point Steel Shear Panel Dampers[D]. Beijing: Tsinghua University, 2017.
[13] Hanbin Ge, Xi Chen, Nobuyuki Matsui. Seismic Demand on Shear Panel Dampers Installed in Steel-Framed Bridge Pier Structures[J]. Journal of Earthquake Engineering, 2011,15(3)
[14] 纪晓东, 马琦峰, 王彦栋等. 钢连梁可更换消能梁段抗震性能试验研究[J]. 建筑结构学报, 2014, 35(06): 1-11.
JI Xiaodong,MA Qifeng,WANG Yandong.et al. Cyclic tests of replaceable shear links in steel coupling beams[J]. Journal of Building Structures, 2014, 35(06): 1-11.
[15] 施刚, 王珣, 高阳,等. 国产低屈服点钢材循环加载试验研究[J]. 工程力学, 2018, 35(8): 9.
SHI Gang, WANG Xun, GAO Yang, et al. EXPERIMENTAL STUDY ON DOMESTIC LOW YIELD POINT STEELS UNDER CYCLIC LOADING[J]. ENGINEERING MECH -ANICS, 2018, 35(8): 9.
[16] Shi Y , Wang M , Wang Y. Experimental and constitutive model study of structural steel under cyclic loading[J]. Journal of Constructional Steel Research, 67 (2011) 1185–1197.
[17] 建筑消能减震技术规程: JGJ 297-2013[S]. 北京: 中国建筑工业出版社, 2013.
Technical specification for seismic energy dissipation of buildings: JGJ 297-2013[S]. Beijing: China Architecture & Building Press, 2013.
[18] Chaboche J L. Time independent constitutive theories for cyclic plasticity. International Journal of Plasticity, 1986, 2(2):149-188.
[19] Chaboche J L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity[J]. Internat -ional journal of plasticity, 1989, 5(3): 247- 302. 14.
[20] 钢及钢产品力学性能试验取样位置及试样制备. GB/T 2975—2018[S]. 北京: 中国标准出版社, 2018.
Steel and steel products—Location and preparation of samples and test pieces for mechanical testing. GB/T 2975—2018[S]. Beijing: Standards Press of China, 2018.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}